Народный опыт. Удобрения делай сам или круговорот высоких урожаев Использование гуминовых удобрений

Оптимальное соотношение компонентов в удобрении
рассчитывается по их качественным показателям и фракции
измельчения угля. Общепринятая пропорция измельченного до
фракции 0,01-2 мм бурого угля к сапропелю влажностью 92% и
органической составляющей 54-65% находится в пределах 10:1 -
6:1.
При определенном механическом смешении двух компонентов на
«быстрых» смесителях частички бурого угля увлажняются жидким
сапропелем, сорбируют на себе гумус из него, а также микро- и
макро- компоненты.

Процесс смешения во времени рассчитывается по скорости
сорбции гуматов из сапропеля на буром угле и вовнутрь, доведя
его обьем до 14-26% от общего содержания в сапропеле, после
чего двухкомпонентная масса выстаивается, доводится до
стандартной влажности продукта и расфасовывается в мягкие
контейнеры или мешки.

По первому производственному внедрению технологического
решения в целях обеспечения рынка Средней Азии, Ирана и Китая
описанными выше удобрениями за компонентную основу приняты
бурые угли Кушмурунского месторождения в Казахстане и
сапропель естественной влажности месторождения Кайволы Куль
Тюменской области России. Производственные цеха предприятия
целесообразно расположить у места получения компонента с
наибольшим обьемом использования, т.е. рядом с складами или
буроугольным разрезом. Сапропель целесообразно добывать,
очищать и ж/д транспортом в цистернах доставлять на
предприятие.

Технологическое решение направлено на создание удобрения,
которое не только многократно повышает урожайность, но и
которое можно производить в любых количествах не меняя
регламента процессов. Само оборудование не наукоемкое,
дешевое в производстве и эксплуатации, может обслуживаться
персоналом без особых навыков.

Одной из особенностей производства является возможность
замены гумусосодержащего жидкого компонента: это может быть
сапропель, продуктивный донный ил, ил рыборазводных прудов,
пастообразные отходы сельхозорганики, коммунальный осадок,
воды болотных торфяных месторождений, др.

Полученные удобрения вносились под различные виды
сельскохозяйственных культур. Два сезона удобрение
апробировалось лабораторией Центра по сапропелю и в хозяйстве
«Сахалоо» под г. Таллинн.

При внесении в грунт буроугольного органо-минерального
удобрения при выращивании ржи удалось получить прибавку
урожая в 28 ц/Га. Доза внесения удобрения составила 30 ц/Га.
При внесении 30 ц/Га удобрений при выращивании:
- пшеницы, получена прибавка урожая в 33 центнера с гектара,
- кукурузы, получена прибавка в 90 ц/Га,
- ячменя, получена прибавка в 29 ц/Га.

Особое внимание было уделено выращиванию картофеля с
применением данного вида удобрений. Перед посевом в пахоту
вносилось 50 ц/Га удобрений, после чего высаживался картофель.
Сорт картофеля «Невский-1» дал урожай в 500 ц/Га, прибавка к
урожаю составила 290 ц/Га. На каждый внесенный в почвы
центнер удобрений получено 5,5-5.7 ц картофеля.
Сорт картофеля «Ласунок» дал урожай в 850 ц/Га, прибавка к
урожаю составила 590 ц/Га. На каждый внесенный в почвы
центнер удобрений получено 11-12 ц картофеля.
Сорт картофеля «Детскосельский» дал урожай в 489 ц/Га,
прибавка к урожаю составила 354 ц/Га. На каждый внесенный в
почвы центнер удобрений получено до 7,3 ц картофеля.

Организация производства удобрений включает в себя два этапа:
подготовительный и монтажно-строительный.
Подготовительный этап - это изучение свойств и
количественно-качественных показателей компонентного сырья,
разработка технологии ведения работ, проектное обоснование
бизнеса, подготовка спецификации оборудования и материалов,
изготовление или заказ оборудования будущего предприятия. По
времени он занимает от 3 до 6 месяцев и может обойтись
заказчику в 1,6-2.4 млн. рублей.
Монтажно-строительный этап - это обустройство хоздвора
предприятия, строительство производственно-фасовочных цехов и
склада готовой продукции. По времени занимает от 8 до 10
месяцев. Стоимость оборудования, его монтажа и наладки
определяется проектной производительностью предприятия,
автоматизацией процессов, вида и ассортимента продукции, вида
фасовки и упаковки готового продукта.

Завод по выпуску буроугольных органо-минеральных удобрений
один из самых дешевых производств такого класса, а продукция -
конкурентная по цене со всеми видами удобрений известных
аналогов.
Следует отметить, что месторождение сапропеля Кайволы Куль
для данного вида удобрений уже готово к разработке, получена
лицензия на добычу и установлено пионерное оборудование,
работающее уже не первый год на добыче и подготовке
сапропеля-сырца естественной влажности. Производственные
мощности на месторождении могут обеспечивать выпуск
сапропелевого компонента и его отгрузки на основное
производство, расположенное в Казахстане, в объеме,
позволяющем наладить выпуск сыпучих буроугольных
органо-минеральных удобрений в 120-150 тыс. т/год.

Себестоимость добычи и подготовки сапропелевого гуминового
компонента при создании производственного объединения не
превысит 250 руб./1000 л, бурого угля - 850 руб./т. Готовый
продукт, расфасованный в открытые мешки или мягкие
контейнеры, по себестоимости не превысит 1200 руб./м 3 .
Оптовые цены на рынке аналогичных сыпучих и
мелкогранулированных органо-минеральных удобрений стран СНГ -
от 2800 руб. до 7600 руб. за 1 м
3 , в странах Ближнего Востока -
от $120 до $218 за м
3 . Это ставит данный вид производства
сельскохозяйственной продукции в ряд быстрокупаемых и
высокорентабельных бизнесов.

овие автора, которое полезно прочитать, чтобы понять, откуда он это взял и можно ли ему верить.
Я не агроном и не какой - либо сельхозработник. Простой журналист и писатель. Тогда почему же взялся рекомендовать такое, на что не отважится армия кандидатов, докторов наук и академиков? Подобный вопрос возникнет при чтении этой брошюры, поэтому полезно его предупредить.
Написать и издать нижеизложенное меня обязывает долг перед людьми, а еще перед народным опытником Петром Матвеевичем Пономаревым, наследником познаний которого я являюсь. На протяжении двадцати лет он выращивал в Ташкенте, на своем дворе, превращенном в опытный участок, по 250 - 300 центнеров пшеницы и ячменя с гектара в пропорциональном пересчете, разумеется. Я помогал Петру Матвеевичу не только физически, на делянках, но и по-журналистски: писал всевозможные прошения и докладные Брежневу, Косыгину, Рашидову и многим другим сановникам, наделенным властью. Умолял: возьмите на вооружение новый опыт, накормите Россию.
Результатом моих писем были визиты различных комиссий. Взирая на заросли пшеницы, эксперты восторженно ахали. Обещали доложить куда следует, помочь, но...
Помощи Петр Матвеевич не дождался, умер в нищете непонятым-непринятым. Дом его тут же снесли, и опытные делянки, по иронии судьбы, ушли под асфальт расширяющегося Института ирригации и механизации сельского хозяйства. Все, что осталось - это моя память. А потому как журналист, я обязан зафиксировать виденное, слышанное и понятое у Петра Матвеевича и передать людям.
После смерти Петра Матвеевича я, как мог, продолжал его работу.
Участвуя в работе Северо-Западного аналитического центра Внутреннего Предиктора России-СССР (г. Санкт-Петербург), я не мог пройти мимо проблем сельского хозяйства, стал фиксировать и накапливать факты, сопоставлять их и, наконец, увидел механизм, с помощью которого скрываются знания высокой урожайности от народов, осознал цели сокрытия этих знаний. Оказалось, что высокие урожаи власть предержащим не нужны. В их нтересах держать народ в состоянии постоянной угрозы голода. И в голоде. Ведь голодные довольствуются малым. А умирающие от голода за кусок хлеба отдадут все...
Утаиваются знания просто. Их даже не прячут. Они есть, изложены в книгах и статьях, но изданы минимальным тиражом и хранятся в специализированных библиотеках и архивах, недоступных земледельцам. Говорят, разбираться в этом культурном наследии - дело ученых. Но ученых и специалистов села уводят от осмысления этих знаний с помощью... образовательных программ, т.е. предопределением того, что им сейчас можно знать, а чего знать нельзя. И если, к примеру, Мировым правительством задумано превратить Россию из производителя сельхозпродукции в ее потребителя, то в наших образовательных программах "непонятным образом" исчезают вопросы, почему почву нельзя перепахивать и копать глубже 15 - 20 сантиметров. В итоге выпускники наших сельскохозяйственных вузов и техникумов последние пятьдесят лет заставляли механизаторов пахать поля на глубину 35 - 45 сантиметров, да еще с поворотом пласта. И это в то время, когда наши западные конкуренты не только не пашут так, но и вообще не выпускают плугов с лемехами для поворота пласта. Почему так делают? Об этом - в материале ниже...

Технологическое решение, разработанное в 1998-2001 г.г. АО «Сапропэк» (г. Таллинн. Эстония) ныне Центр по сапропелю (г. Астрахань. Россия), ориентировано на производство органо-миенеральных удобрений для сельского хозяйства и рекультивантов для восстановления истощенных и техногенно нарушенных земель.

Данный вид удобрения производится из измельченного до пылеватой фракции бурого угля с максимальным размером частиц 3-5 мм и органического, органо-глинистого, или органо-известкового сапропеля, очищенного от посторонних инородных включений с естественной влажностью в пределах 87-97%.

Оптимальное соотношение компонентов в удобрении рассчитывается по их качественным показателям и фракции измельчения угля. Общепринятая пропорция измельченного до фракции 0,01-2 мм бурого угля к сапропелю влажностью 92% и органической составляющей 54-65% находится в пределах 10:1 - 6:1.

При определенном механическом смешении двух компонентов на «быстрых» смесителях частички бурого угля увлажняются жидким сапропелем, сорбируют на себе гумус из него, а также микро- и макро- компоненты.

Процесс смешения во времени рассчитывается по скорости сорбции гуматов из сапропеля на буром угле и вовнутрь, доведя его обьем до 14-26% от общего содержания в сапропеле, после чего двухкомпонентная масса выстаивается, доводится до стандартной влажности продукта и расфасовывается в мягкие контейнеры или мешки.

По первому производственному внедрению технологического решения в целях обеспечения рынка Средней Азии, Ирана и Китая описанными выше удобрениями за компонентную основу приняты бурые угли Кушмурунского месторождения в Казахстане и сапропель естественной влажности месторождения Кайволы Куль Челябинской области России. Производственные цеха предприятия целесообразно расположить у места получения компонента с наибольшим обьемом использования, т.е. рядом с складами или буроугольным разрезом. Сапропель целесообразно добывать, очищать и ж/д транспортом в цистернах доставлять на предприятие.

Технологическое решение направлено на создание удобрения, которое не только многократно повышает урожайность, но и которое можно производить в любых количествах не меняя регламента процессов. Само оборудование не наукоемкое, дешевое в производстве и эксплуатации, может обслуживаться персоналом без особых навыков.

Одной из особенностей производства является возможность замены гумусосодержащего жидкого компонента: это может быть сапропель, продуктивный донный ил, ил рыборазводных прудов, пастообразные отходы сельхозорганики, коммунальный осадок, воды болотных торфяных месторождений, др.

Полученные удобрения вносились под различные виды сельскохозяйственных культур. Два сезона удобрение апробировалось лабораторией Центра по сапропелю и в хозяйстве «Сахалоо» под г. Таллинн.

При внесении в грунт буроугольного органо-минерального удобрения при выращивании ржи удалось получить прибавку урожая в 28 ц/Га. Доза внесения удобрения составила 30 ц/Га.

При внесении 30 ц/Га удобрений при выращивании: - пшеницы, получена прибавка урожая в 33 центнера с гектара, - кукурузы, получена прибавка в 90 ц/Га, - ячменя, получена прибавка в 29 ц/Га. Особое внимание было уделено выращиванию картофеля с применением данного вида удобрений. Перед посевом в пахоту вносилось 50 ц/Га удобрений, после чего высаживался картофель. Сорт картофеля «Невский» дал урожай в 500 ц/Га, прибавка к урожаю составила 290 ц/Га. На каждый внесенный в почвы центнер удобрений получено 5,5-5.7 ц картофеля.

Сорт картофеля «Ласунок» дал урожай в 850 ц/Га, прибавка к урожаю составила 590 ц/Га. На каждый внесенный в почвы центнер удобрений получено 11-12 ц картофеля.

Сорт картофеля «Детскосельский» дал урожай в 489 ц/Га, прибавка к урожаю составила 354 ц/Га. На каждый внесенный в почвы центнер удобрений получено до 7,3 ц картофеля.

Организация производства удобрений включает в себя два этапа: подготовительный и монтажно-строительный.

Подготовительный этап - это изучение свойств и количественно-качественных показателей компонентного сырья, разработка технологии ведения работ, проектное обоснование бизнеса, подготовка спецификации оборудования и материалов, изготовление или заказ оборудования будущего предприятия. По времени он занимает от 3 до 6 месяцев и может обойтись заказчику в 1,6-2.4 млн. рублей.

Монтажно-строительный этап - это обустройство хоздвора предприятия, строительство производственно-фасовочных цехов и склада готовой продукции. По времени занимает от 8 до 10 месяцев. Стоимость оборудования, его монтажа и наладки определяется проектной производительностью предприятия, автоматизацией процессов, вида и ассортимента продукции, вида фасовки и упаковки готового продукта.

Завод по выпуску буроугольных органо-минеральных удобрений один из самых дешевых производств такого класса, а продукция - конкурентная по цене со всеми видами удобрений известных аналогов.

Следует отметить, что месторождение сапропеля Кайволы Куль для данного вида удобрений уже готово к разработке, получена лицензия на добычу и установлено пионерное оборудование, работающее уже не первый год на добыче и подготовке сапропеля-сырца естественной влажности. Производственные мощности на месторождении могут обеспечивать выпуск сапропелевого компонента и его отгрузки на основное производство, расположенное в Казахстане, в объеме, позволяющем наладить выпуск сыпучих буроугольных органо-минеральных удобрений в 120-150 тыс. т/год.

Себестоимость добычи и подготовки сапропелевого гуминового компонента при создании производственного объединения не превысит 250 руб./1000 л, бурого угля - 850 руб./т. Готовый продукт, расфасованный в открытые мешки или мягкие контейнеры, по себестоимости не превысит 1200 руб./м 3 . Оптовые цены на рынке аналогичных сыпучих и мелкогранулированных органо-минеральных удобрений стран СНГ - от 2800 руб. до 7600 руб. за 1 м 3 , в странах Ближнего Востока - от $120 до $218 за м 3 . Это ставит данный вид производства сельскохозяйственной продукции в ряд быстрокупаемых и высокорентабельных бизнесов.

Проектированием предприятий по производству удобрений из бурого угля и сапропеля, поставкой оборудования по спецификации, запуском его в эксплуатацию занимается Центр по сапропелю. Сроки проектирования не превышают 4 месяцев, а стоимость - в пределах 620-1200 тыс. руб.

Капитальные вложения в завод, производительностью 40 тыс. т удобрений в год (без зданий и сооружений) - в пределах 45 млн. руб.

Б иологи ческие науки / 2 Структурная ботаника и биохимия растений

К.с.х.н. Мемешов С. К., к.б.н. Дурмекбаева Ш.Н.

Кокшетауский государственный университет имени Ш.Уалиханова.

Влияние гуминовых веществ на урожайность и на морфо-анатомическую структуру яровой пшеницы

Яровая пшеница в зерновом балансе страны занимает одно из ведущих мест, поэтому рост ее урожайности – важнейшая народнохозяйственная задача. Величина урожая зависит от ряда факторов: погодных условий, агротехники возделывания, правильного выбора предшественника и другие.

В Казахстане так же, как и в других странах, возделывают при товарном производстве районированные сорта, так как при высоком качестве товарное районированное зерно сорта продается дороже рядового.

Исследования проводились на опытном стационаре Кокшетауского филиала Каз НИИЗХ им. А.И. Бараева. Объектом исследования являлась яровая пшеница сорта Казахстанская раннеспелая.

Целью работы являлось экспериментальное обоснование эффективности различных способов применения гуминовых веществ при возделывании яровой пшеницы.

Изучались влияние гуминовых веществ(гумата натрия и бурого угля) на морфо-анатомические особенности, на технологические показатели качества зерна, на величину урожая зерна яровой пшеницы сорта Казахстанская раннеспелая и роль гуминовых веществ при получении экологической чистой продукции.

Почва опытного участка чернозем обыкновенный , карбонатный , среднемощный, малогумусный . Площадь опытной делянки 100,8 кв . м ., учетной 64 кв . м ., повторность четырехкратная .

Агротехника возделывания яровой пшениц ы сорта Казахстанская раннеспелая соответствовала рекомендациям принятым в зоне. Обработку семян гуматом натрия в концентрации 0,005 %проводили в день посева, подкормку посевов в фазу кущения, внесение в почву в дозе 60 кг/га перед посевом. Внесение бурого угля в норме 200, 400, 600 кг-га проводили под предпосевную обработку. Гуминовые вещества применяли без фосфорного фона и на фоне Р 60 и сравнивали с контрольным вариантом.

В полевых опытах проводились фенологические наблюдения, изучалась динамика накопления сухого вещества, развитие листовой площади и фотосинтетическая деятельность растений, элементы структуры урожая, проведен учет количества растительных остатков на поверхности почвы и расчитывался коэффициент водопотребления пшеницы .

Содержание сырой клейковины определяли по ГОСТу 13586.1-68, качество на приборе ИДК-1, содержание протеина на приборе Инфроматик-8600. Содержание тяжелых металлов (Cd , Pb , Cu , Zn ) по ГОСТу Р 51301-99 на приборе АВА-1-03 на лаборатории филиала «Акмолинская аграрная экспертиза» республиканского государственного предприятия «Казагроэкс». Анатомические исследования проводили по общепринятой методике. Учет урожая проведен методом сплошной уборки делянок зерновым комбайном. Данные урожайности приведены к базисным кондициям. Дисперционные и корреляционные анализы проведены по Б.А. Доспехову (1982).

Определено положительное влияние гуминовых веществ на рост и развитие и на особенности анатомического строения яровой пшеницы. На вариантах с применением гуминовых веществ увеличивается фотосинтетический потенциал растении, возрастает накопление и среднесуточный прирост сухого вещества. Гуминовые вещества способствуют снижению коэффициента водопотребления яровой пшеницы. На варианте с обработкой семян и подкормкой посевов гуматом натрия коэффициент водопотребления по сравнению с контрольным вариантом снизился на 25,9%, а на варианте с нормой внесения бурого угля 400 кг/га - и на 17,5 %.

При примении гуминовых веществ увеличивается высота растений и количество растительных остатков на поверхности почвы, что улучшает условия уборки урожая и усиливает устойчивость поверхности почвы против ветровой эрозии.

Под влиянием гумата натрия и бурого угля в анатомическом строении стебля и листа увеличиваются количество и размеры проводящих пучков, толщина механической ткани, размеры паренхимных клеток и число их слоев. При увеличении толщины механической ткани повышается устойчивость растении к полеганию.

Выявлено взаимосвязь между морфо-анатомическими признаками пщеницы и продуктивностью. Особенно высокая коррелятивная связь выявлена между урожайностью зерна и количествомпроводящих пучковв анатомическом строении стебля (r = 0,966 ).

Определено существенное влияние гуминовых веществ на урожайность зерна. Наибольшую прибавку урожая зерна яровой пшеницы обеспечила обработка семянперед посевом и подкормка посевов в фазу кущения раствором гумата натрия, где прибавка урожаяв среднем за четыре года составила 4,2 ц /га, при урожайности на контроле 11,5 ц/га. На варианте с нормой внесения бурого угля 600 кг/га при урожайности на контроле 11,7 ц/га прибавка урожаясоставила 3,1 ц/га.

Среднегодовой условно-чистый доход на варианте с с обработкой семян перед посевоми подкормкой посевов в фазу кущения раствором гумата натрия составил 3742,2 тг/га, а на варианте с нормой внесения бурого угля 400 кг/га 1444,2 тг/га. Наилучший биоэнергетический эффект получен на вариантес обработкой семян перед посевом и подкормкой посевов в фазу кущения раствором гумата натрия, где количество энергии в дополнительной продукции составила 6984,61 МДж, биоэнергетический КПД 9,83 единиц. На вариантеР 60 + с обработка семян перед посевоми подкормкой посевов в фазу кущения раствором гумата натрия эти показатели соответственно 8980,20 МДж и 3,66 единиц. Эти способы применения внедрены в производство в хозяйствах Северного Казахстана.

Определено положительное влияние гумата натрия на снижение содержание тяжелых металлов (Cd , Pb , CU , Zn ) в зерне пшеницы и роль при получении экологической чистой продукций. Содержание Cd на всех вариантах не обнаружено, по сравнению с контрольным вариантом на вариантах с применением гуматов отмечено снижения содержания Pb , Cu , Zn .

Литература:

1. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований).- 5-е изд., доп. и перераб.- М.: Агропромиздат, 1985.- 351 с.

2. Юдин Ф.А. Методика агрохимических исследований.- 2-е изд., перераб.и доп.- М.: Колос, 1980.- 366 с.

3 .Зерновые, зернобобовые и масличные культуры. М.: Изд.стандартов, 1990.- Ч.2.-319 с .

4 . Ничипорович А.А. и др. Фотосинтетическая деятельность растений в посевах.- М.: Изд.АН СССР. 1961.

5 . Методические указания по определению экономической эффективности удобрений и других средств химизации, применяемых в сельском хозяйстве.- М.: Колос, 1979.- 30 с.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Просянников Василий Иванович. Эффективность применения окисленных углей в качестве удобрения сельскохозяйственных культур в лесостепной зоне Кемеровской области: диссертация... кандидата сельскохозяйственных наук: 06.01.04.- Барнаул, 2007.- 125 с.: ил. РГБ ОД, 61 07-6/262

Введение

Глава I. Использование окисленных углей в качестве удобрения сельскохозяйственных культур 7

1.1 Использование окисленных углей в сельском хозяйстве 8

1.1.1 Использование гуминовых удобрений 9

1.1 .2 Органо-минеральные удобрения на основе углеотходов 16

1.1.3 Использование окисленных углей в качестве удобрения сельскохозяйственных культур 19

Глава II. Условия, объекты и методы исследований 29

2.1. Физико-географические условия, климатические особенности и почвенный покров лесостепной зоны Кемеровской области

2.2. Объекты и методы исследований 38

2.3. Метеорологические условия в годы проведения опытов 43

Глава III. Влияние окисленных углей на обеспеченность почв элементами питания, урожайность и качество продукции 47

3.1. Агрохимические свойства окисленных углей 49

3.2 Химический состав и содержание тяжелых металлов в окисленных углях 53

3.3. Влияние окисленных углей на свойства почв 64

3.4. Влияние удобрений из углистых пород Кузнецкого бассейна на урожайность, качество сельскохозяйственной продукции 71

3.4.1. Влияние углеотходов на урожайность и качество зерна ячменя 72

3.4.2.Влияние углеотходов на урожайность и качество зерна овса 75

3.4.3 Влияние окисленных бурых углей на урожайность, качество зерна яровой пшеницы и потребление питательных элементов в «островной» лесостепи 78

3.4.4 Влияние окисленных углей на урожайность, качество зерна яровой пшеницы и картофеля в лесостепи Кузнецкой котловины 84

3.5. Баланс питательных веществ 91

Глава IV. Энергетическая и экономическая оценка эффективности выращивания яровой пшеницы при использовании окисленных углей 97

Выводы, предложения Производству 107

Библиографический список 109

Введение к работе

В сельском хозяйстве Кемеровской области в результате интенсивного использования земель снижаются запасы гумуса. За последние два десятилетия наблюдается отрицательный баланс гумуса и питательных веществ в пахотных почвах. Ежегодная потребность в органических удобрениях составляет около 3 млн. тонн. Удовлетворить ее за счет традиционных форм органики в настоящее время не возможно.

Источниками получения дополнительного органического вещества в качестве удобрений для сельского хозяйства области являются: окисленные в пластах бурые угли Канско-Ачинского угольного бассейна, окисленные в пластах каменные угли Кузбасса; углесодержащие отходы флотационного обогащения угля. Окисленные угли имеют широкий набор макро- и микроэлементов являются кладовой органического вещества, содержащего большое количество гуминовых кислот, которые по своему составу близки к почвенным.

Окисленные в пластах угли как бурые, так и каменные практически не используются в народном хозяйстве в качестве топлива или сырья для других отраслей и при добыче, угля открытым способом поступают в отвалы вместе со вскрышными породами. Количество окисленных углей оценивается по каждому месторождению только при детальной разведке и разработке, но оно огромно, На разрезах Кузбасса объёмы окисленных углей поступающих в отвалы составляют десятки миллионов тонн ежегодно.

При обогащении угля образуется большое количество углесодержащих отходов. Ежегодный выход отходов флотационного (мокрого) обогащения угля в Кузбассе составляет миллионы тонн. Они складируются в хвостохранилища, где окисляются в условиях атмосферы и в настоящее время практически не используются.

Размещение окисленных углей и углеотходов является серьезной проблемой для Кузбасса. Окисленные угли, складируемые в отвалах, горят,

4 вызывая загрязнение атмосферы, под углеотходы занимаются сотни гектаров плодородных земель.

Окисленные угли содержат до 70% органического вещества, в т. ч. отходы флотации 20-60%, содержание СаО и MgO в них достигает 30-40% от минеральной части. Они являются хорошим сорбентом, имеют щелочную реакцию (рН- 7,3-7,6). Благодаря этим свойствам окисленные угли возможно использовать как удобрения.

Поэтому исследования по использованию окисленных углей в качестве удобрений сельскохозяйственных культур в Кемеровской области отличаются особой актуальностью.

Цель исследований - изучение возможности и эффективности применения окисленных углей в качестве удобрения зерновых культур и картофеля в лесостепной зоне Кемеровской области.

Задачи:

дать характеристику окисленным углям как удобрениям;

выявить влияние внесения окисленных углей на валовое содержание тяжелых металлов и их подвижных соединений в почвах;

изучить влияние различных доз окисленных углей на урожайность и качество сельскохозяйственных культур;

установить влияние различных доз окисленных углей на накопление и вынос основных элементов минерального питания;

определить содержание тяжелых металлов в продукции при применении окисленных углей;

определить энергетическую и экономическую эффективность окисленных углей в качестве удобрения изучаемых культур.

Научная новизна. Впервые на основании комплексных исследований обосновано применение окисленных углей в качестве удобрения сельскохозяйственных культур в условиях лесостепной зоны Кемеровской области. Установлены оптимальные дозы внесения окисленных углей для получения урожая с соответствием его качества нормативам по безопасности

5 продукции. Определено влияние окисленных углей на потребление элементов питания и тяжелых металлов яровой пшеницей.

Практическая значимость. Разработаны практические рекомендации по применению окисленных углей в качестве удобрения под сельскохозяйственные культуры. Рекомендованы дозы внесения окисленных углей для получения экологически чистой растениеводческой продукции. Показан баланс элементов питания. Определена биоэнергетическая, агрономическая и экономическая эффективность удобрения яровой пшеницы окисленными углями.

Апробация. Основные положения работы докладывались и обсуждались на областных и районных агрономических совещаниях с 1985 по 2006 гг. На всесоюзной научно-практической конференции «Социально-экономические проблемы достижения коренного перелома в эффективности развития производительных сил Кузбасса» (Кемерово, 1989), на всесоюзной научно-технической конференции «Экологические проблемы угольной промышленности Кузбасса» (Междуреченск, 1989), на межрегиональной научно-практической конференции «Агрохимия: наука и производство» (Кемерово, 2004), на научно-практических конференциях «Тенденции и факторы развития агропромышленного комплекса Сибири» (Кемерово, 2005; 2006), на совещаниях специалистов агрохимической службы России.

Защищаемые положения:

    Применение окисленных углей в качестве удобрения улучшает обеспеченность почвы подвижными элементами питания;

    Удобрение зерновых культур и картофеля окисленными углями повышает урожайность и качество продукции;

2. Применение окисленных углей в лесостепной зоне Кемеровской

области энергетически и экономически выгодно. Публикации. По материалам диссертации опубликовано 6 научных работ, в том числе 1 в центральной печати.

Структура и объем работы. Диссертация состоит из введения, 4 глав, выводов и рекомендаций производству, списка литературы. Содержание изложено на 125 страницах машинописного текста, включает 53 таблицы, 7 рисунков. Библиографический список состоит из 190 наименований, из них 12 на иностранном языке. При оформлении диссертационной работы использованы возможности компьютерной графики, текстового редактора Word.

Автор выражает благодарность научному руководителю - заслуженному деятелю науки РФ, доктору сельскохозяйственных наук, профессору Л.М. Бурлаковой за ценные советы, постоянную поддержку и методическую помощь при выполнении данной работы. Автор благодарит за помощь и поддержку своих коллег ФГУ Центра агрохимической службы «Кемеровский».

Использование гуминовых удобрений

Гуминовые удобрения - удобрения, регулирующие усвоение трудно доступных фосфатов кальция и железа; структурообразующие удобрения, благоприятно влияющие на водный и тепловой режим почв (Драгунов, 1957). Основным критерием выбора сырья для получения гуминовых удобрений, является содержание в них гуминовых кислот, способных переходить в растворимое состояние в водных растворах щелочей. Торфа и бурые угли (окисленные) являются основным сырьем для производства гуминовых кислот (Христева, 1957, 1968; Кухаренко 1957). По данным Н.И. Назаровой, М.С. Курбатова (1962), по содержанию гуминовых кислот виды твердого топлива неравноценны между собой. В торфах их содержится до 50%, в землистых бурых углях - 70-80%, в выветрившихся каменных углях - 80%) на органическую массу. Окисленные угли Хакассии содержат 55-70% гуминовых кислот, 50-79% углерода и 32-45%) кислорода (Антонов и др., 2001).

Гуминовые кислоты содержатся в почве (до 1-5%о в верхнем 30-см слое), навозе (до 5-15%о), компостах, осадках сточных вод, сапропеле (10-20%), торфе (10-40%), лигнине (50-80%) (цит. по Г.К. Панкратовой, В.И. Щелокову, Ю.Г. Сазонову, 2005).

Из органических ископаемых по химическим признакам ближе всех к перегною стоит торф, затем окисленные бурые и каменные угли. Применение торфа и окисленных углей в их естественном состоянии зачастую не дает желаемого результата. Объясняется это тем, что хотя торф и угли содержат довольно высокий процент питательных веществ, но растения усваивают их недостаточно, так как они очень прочно связаны с органической частью этих веществ. Поэтому для биологического эффекта приходится вносить их в больших дозах (20-30 т/га и более) (Назарова, Курбатов, 1962).

Е.А. Шипитин, В.Л. Булганин, Ю.И. Гержберг (1994) отмечают, что во всем мире резко возрос интерес к удобрениям гуматного типа. Это объясняется тем, что все больше накапливается данных о положительном влиянии гуминовых веществ на рост и развитие растений, а также на качество сельскохозяйственной продукции и плодородие почв. Гуминовые соединения органики, являясь физиологически активными веществами, регулируют и интенсифицируют обменные процессы в растениях и почве. Установлено, что гуминовые вещества не только увеличивают урожайность, массу плода и ускоряют сроки созревания, но и улучшают качество продукции, повышая содержание в ней Сахаров, витаминов и уменьшая в 6-10 раз количество нитратов.

Гуматы калия, натрия и аммония, применяемые в жидком или твердом виде (часто угли, обработанные водными растворами щелочей в определенных соотношениях до получения сыпучего состояния), представляют собой стимуляторы роста и развития растений (Назарова, Курбатов, 1962; Кухаренко, 1976).

Л.А. Христева (1968) опытами в 1957 г. на проростках ячменя и кукурузы доказала, что гуминовые кислоты как бурых, так и выветрившихся каменных углей являются биологически активными, причем действие первых оказалось сильнее. Это связано с содержанием органического вещества, так как зольная часть в природе стимулирующего характера играет незначительную роль. Она же (1968) в опытах 1959 г. с проростками и растениями зерновых культур установила, что их способность переносить высокие температуры, воздушную и почвенную засухи, сопротивляться токсическому действию высоких доз удобрений, связана с обеспеченностью кислородом. Гуминовые кислоты используются растениями для активизации дыхательного газообмена и понижения транспирации.

По заключению Н.И. Назаровой, М.С. Курбатова (1962), стимулирующее действие гуминовых кислот проявляется в том, что они усиливают развитие корневой системы и надземной массы. Корневая система становится длиннее и более мочковатой. В листьях увеличивается содержание хлорофилла, и листовая пластинка становится больше. Растения раньше зацветают, и на них быстрее созревают плоды (рис. 1). Под влиянием гуминовой кислоты в растительном организме резко активизируется обмен веществ, усиливается дыхание и процессы синтеза веществ.

Исследования выше названных ученых показали, что различные растения неодинаково реагируют на внесение гуминовых удобрений на разных этапах своего развития. Однолетние растения больше всего реагируют в начале своего развития и в момент образования органов репродукции, древесные - после пересадки сеянцев и саженцев, когда травмируется корневая система. То же можно сказать и об овощных рассадных культурах.

Они установили, что на разных почвах действие гуминовых удобрений различно. Самый большой эффект от их применения наблюдается на бедных песчаных и малогумусированных почвах. Действие гуминовых удобрений зависит также от условий внешней среды: оно увеличивается при засухе, повышенных температурах и других отклонениях внешних условий от нормы. Потребность растений в гуминовых кислотах связана со стадийным состоянием организма. Различные сельскохозяйственные культуры не одинаково реагируют на гуминовые кислоты: лучше всех - картофель, капуста, помидоры, сахарная свекла; хорошо - озимая и яровая пшеницы, ячмень, овес, просо, кукуруза, рис, житняк, люцерна.

Исследователями были опробованы в опытах в 1960-1961 гг. гуминовые удобрения в виде жидких (гуматы аммония, гуматы калия и гуматы натрия) и твердых комбинированных удобрений (гумофос и смесь окисленного угля с дефекационной грязью). Ими были сделаны выводы, что действие гуминовых удобрений на сельскохозяйственные культуры эффективно. Установлено, что внесение этих удобрений в почву значительно повышает урожайность культур. Кроме того, отмечено созревание помидоров и ранней капусты раньше контроля на 10-15 дней.

Метеорологические условия в годы проведения опытов

Метеорологические условия вегетационного периода 1984 года несколько отличались от средних многолетних (табл. 2.1). Количество осадков, выпавших в мае, близко к норме, в июне выпало 65,6 мм осадков - на 36% выше нормы, в июле и августе осадков было значительно ниже нормы. В мае, июле и августе среднемесячная температура была ниже нормы соответственно на 0,5, 0,9 и 3,4. С мая по сентябрь осадков выпало на 53,3 мм меньше в сравнении со средними многолетними данным, а среднемесячный температурный режим был на 0,7 ниже нормы. Гидротермические условия в течение вегетационного периода в годы исследований изменялись в широких пределах. Запасы продуктивной влаги в 2003 и 2004 гг. исследований были меньше нормы. Количество осадков за вегетационный период было выше среднего многолетнего только в 2002 году. Особенно засушливым был 2003 год. Температура воздуха в мае и июне, в годы исследований была значительно выше средней многолетней, в июле и августе - на уровне средней. Гидротермический коэффициент за вегетационный период составил: 2002 г. - 1,90, 2003 г. - 0,86 и 2004 г. -1,17. Запасы продуктивной влаги в 2003 и 2004 годы были меньше нормы. Количество осадков за вегетационный период было выше среднего многолетнего только в 2002 г. Температура воздуха в мае, июне и августе в годы исследований была выше средней многолетней, в июле - ниже средней.

Гидротермический коэффициент за вегетационный период составил: 2002год- 1,79,2003год- 1,09 и 2004 год - 0,94. Окисленные в пластах угли и отходы углеобогащения, содержащие большое количество органического вещества в настоящее время не используются в народном хозяйстве и как отходы угольной промышленности Кузбасса идут в отвалы.

Окисленные угли - верхняя часть угольных пластов, выходящих под наносы при добыче угля открытым способом не используются в качестве топлива и складируются вместе со вскрышными породами. Объёмы окисленных углей в отвалах Кузбасса составляют десятки миллионов тонн ежегодно. По данным ООО «Сибгеопроект» при проектировании добычи угля на участке «Инской -2» на 2006-2014 гг. небольшим разрезом количество окисленных углей, которое поступит в отвал, определено в количестве 1,7 млн. тонн или 8,4% от объёма добычи.

Количество отходов углеобогащения в Кузбассе увеличивается ежегодно, в 1990 году составляло 15,6 млн. тонн, в том числе, отходов флотационного обогащения угля более 5,1 млн. тонн. В настоящее время, в связи с увеличением объёмов углеобогащения, количество отходов флотационного обогащения угля увеличилось практически в два раза. Размещение окисленных углей и углеотходов является серьезной проблемой для Кузбасса. Окисленные угли, складируемые в отвалах, горят, вызывая загрязнение атмосферы, под углеотходы занимаются сотни гектаров плодородных земель. Возможность использования окисленных углей и углеотходов как удобрений в сельском хозяйстве предопределяется их составом: большим содержанием органического вещества, близкого по своим свойством к органическому веществу почвы, широким набором макро- и микроэлементов и высокой поглотительной способностью. В настоящее время 97,3% пахотных угодий России имеют отрицательный баланс гумуса (Ершов, 2004). В Ростовской области в 70-е годы отмечалось снижение гумуса на 91 кг на га в среднем за год (Шапошникова, Листопадов, 1984). Положительный баланс гумуса был только в полях кукурузы на зерно, где в среднем на 1 га вносилось 15 т навоза, и под многолетними травами, с небольшим превышением - под ячменем. Особенно высока потеря гумуса под озимой пшеницей и под масличной культурой - подсолнечником.

За последние 100 лет сельскохозяйственного использования обыкновенных черноземов в Алтайском крае потеряна половина процентного содержания гумуса в верхнем горизонте (Бурлакова, Морковкин, 2005). По мнению В.М. Назарюка (2002), проблема поддержания баланса органических соединений азота (или гумуса) в почве остается актуальной и до сих пор не решенной, и за последние 100 лет в почвах России отмечено значительное снижение запасов гумуса.

В сельском хозяйстве Кемеровской области за последние два десятилетия в результате интенсивного использования земель складывался отрицательный (дефицит возрос с 1,0 до 1,9 т/га) баланс гумуса в пахотных почвах (Просянникова, 2005). Ежегодная потребность в органических удобрениях составляет около 3 млн. тонн (Просянникова, 2006).

Влияние окисленных углей на свойства почв

При изучении влияния окисленных углей на урожай и качество продукции были проведены наблюдения за изменением агрохимических показателей почв. Ежегодно внесение углей под пшеницу проводилось на новом участке одного и того же поля агрофирмы «Тисуль» в дозах 0,2 - 1,2 т/га с шагом по вариантам 0,2 т. С внесением 200 кг углей в почву поступало 124,4 кг органического вещества, 9,95 кг свободных гуминовых кислот, 1,7 кг общего азота и незначительное (менее 1 кг) количество калия и фосфора. Изменение агрохимических показателей почвы через четыре месяца после внесения окисленных углей представлено в таблице 3.13.

Содержание гумуса на контроле в 2002-2003 гг. составляло 9,7-9,5%, в 2004 г. - 9,3%, гидролитическая кислотность 3,16-3,14-3,80 мг-экв./100г, кислотность почвы по годам исследования рН- 5,4-5,3. Содержание подвижного фосфора - 28, 25 и 23 мг/кг, обменного калия - ПО, 106 и 95 мг/кг. Сумма поглощенных оснований и емкость поглощения высокая 41,2-43,1-45,0 и 44,36-46,24-48,80 мг-экв./ЮОг почвы соответственно. Внесение угля оказало влияние на агрохимические свойства почвы: гидролитическую кислотность, содержание подвижных фосфора и калия. По сравнению с контролем гидролитическая кислотность почв уменьшилась на всех вариантах 2002 - 2004 гг. исследования, в том числе на вариантах с внесением 1,2 т/га - до 3,06, 2,87 и 3,24 мг-экв/100 г. На всех вариантах 2002 и 2003 гг. увеличилось содержание подвижного фосфора на 8 - 13 и калия на 19-34 мг/кг относительно контроля. В 2004 году содержание подвижного фосфора увеличилось на вариантах с внесением больших доз угля на 19 мг/кг. Наблюдается тенденция к увеличению емкости поглощения. Изменения по кислотности почвы и содержанию гумуса, кальция, магния недостоверны.

В опытах с пшеницей в АОЗТ «Береговой» в качестве удобрений вносился тот же бурый окисленный уголь Тисульского месторождения ежегодно на новых участках. Изменение агрохимических показателей почвы ко времени уборки урожая представлено по вариантам в таблице 3.14. Содержание гумуса на контрольных вариантах составляло 7,6 и 9,3%. Реакция почвенного раствора слабокислая 5,4 и 5,1. Гидролитическая кислотность - 4,26 и 5,14. Содержание подвижного фосфора 219 и 104 мг/кг, обменного калия 126 и 118 мг/кг. Емкость поглощения почв и сумма поглощённых оснований -высокая и составляет 57,66 - 43,64 и 53,4 - 38,5 мг-экв./ЮО г. Содержание поглощенных: кальция -21,1 и 18,0 мг-экв/100 г и магния -2,3 и 4,3 мг-экв/100 г почвы. На вариантах опыта 2002 г. внесение окисленного угля увеличило содержание в почве подвижного фосфора на 7 - 32 и обменного калия на 6 - 15 мг/кг, снизилась гидролитическая кислотность. На вариантах опыта 2003 г. наблюдается снижение гидролитической кислотности при высоких дозах внесения углей на 0,43 - 0,51 мг-экв./ЮО г и кислотности почв на 0,2 ед. По остальным показателям изменения не достоверны.

В опытах с картофелем на полях АОЗТ «Береговой» при внесении окисленных бурых углей агрохимические показатели почвы ко времени уборки урожая представлены в таблице 3.15. Содержание гумуса на контрольном варианте 7,9%. Кислотность почв слабокислая, рНс - 5,4 и 5,5, гидролитическая кислотность - 4,14 и 3,14. Содержание подвижного фосфора на участке 2002 г. очень высокое, на участке 2003 г. - повышенное. Содержание подвижного калия повышенное 122 и 153 мг/кг. Емкость поглощения и сумма поглощённых оснований высокая и составляет 57,24-56,24 и 53,1 мг-экв/100 г почвы. Количество поглощённого кальция 21,3 и магния 2,5 и 3,5 мг-экв/100 г почвы. Внесение окисленных углей под картофель снизило гидролитическую кислотность и кислотность почв на всех вариантах. С увеличением доз внесения угля она уменьшалась по вариантам опыта.

Увеличение содержания подвижного калия наблюдается на всех вариантах, но не пропорционально дозам внесения угля. На вариантах с внесением 0,4 и 0,6 т/га содержание калия в почвах по сравнению с контролем увеличилось на 17 и 15% соответственно. В опыте 2003 г. наблюдалось увеличение содержания гумуса. Изменение остальных показателей не значительно.

Таким образом, внесение окисленных бурых углей на черноземных почвах положительно влияет на агрохимические свойства: уменьшает кислотность и гидролитическую кислотность почв и увеличивает содержание в почвах подвижного калия. Эти изменения и их величина так же зависят от погодных условий года.

Энергетическая и экономическая оценка эффективности выращивания яровой пшеницы при использовании окисленных углей

Экономически выгодные и энергетически целесообразные мероприятия по применению удобрений в сельском хозяйстве основа рационального хозяйствования и рыночных отношений. Расчеты агрономической, экономической и энергетической эффективности применения удобрений позволяют наиболее точно, объективно и всесторонне оценить систему удобрений в технологическом процессе возделывания сельскохозяйственных культур.

Без выявления показателей экономической эффективности нельзя делать выводы о пригодности использования удобрений (Минеев, 1993, 2004). Многие ученые (Калугин, 1977; Синягин, Кузнецов, 1979; Усенко, 2003) отмечали высокую эффективность органических удобрений, в частности навоза при возделывании различных сельскохозяйственных культур в Сибири и которая установлена во всех почвенно-климатических зонах. Эффективность зависит от дозы удобрения, его качества, почвенно-климатических условий, сельскохозяйственной культуры и других факторов. Прибавка зерна яровой пшеницы колеблется от 1,5-2,5 ц/га на черноземах до 7-10 ц/га на дерново-подзолистых почвах. Окупаемость 1 т навоза зерном в первый год составляет 0,3-0,5 ц зерна, 2-3 ц картофеля, 3-4 ц зеленой массы кукурузы, в засушливых условиях эффект ниже. Поскольку органические удобрения имеют продолжительное последействие, то эффективность его выше: 1 т обеспечивает прирост урожая всех культур за ротацию севооборота до 10 ц в пересчете на зерно.

Проведенный Г.А. Жуковым (1985) анализ систем удобрений рекомендуемых для различных севооборотов Сибири, показывает, что оптимальное внесение органических удобрений на 1 га севооборотной площади в степной и южной лесостепной зонах составляет 5-6 т, в северной лесостепной - 6-8 т и в таежной и подтаежной -7-12 т.

В Тюменской области на серых лесных почвах от внесения органического удобрения, приготовленного на основе торфа и жидкого навоза, увеличение урожайности в звене севооборота кукуруза - пшеница составило 6,9-11,2 ц/га к. ед. (Кольцов, 1983).

Основная задача полевых опытов с удобрениями - сравнительная оценка их действия на урожайность сельскохозяйственных культур. Эффективность различных сочетаний и доз удобрений определяли прибавкой урожая, окупаемостью, биоэнергетическим КПД (КПД).

Оценка экономической и биоэнергетической эффективности проведена в соответствии с инструкцией ЦИНАО (1987), методическими указаниями ЦИНАО (1974), методическими рекомендациями (Ермохин, Неклюдов, 1994; Самаров, Логуа, Баранова, 2000), методикой определения экономической эффективности (1984) и практическим рекомендациям (Интегрированное применение удобрений..., 2005) при стандартной влажности продукции с учетом затрат энергии на внесение удобрений.

В вариантах с внесением только окисленных бурых углей пшеница дала прибавку зерна 2,2-4,2 ц /га. Самая большая прибавка получена на вариантах с внесением 800 и 1000 кг/га окисленного угля. Окупаемость на этих делянках опыта составила 4,2-5,0 ц зерна на 1 тонну окисленного бурого угля, за счет органических удобрений получено 24-25% урожая. Рентабельность применения окисленных бурых углей на опытных делянках варьирует от 17 до 47%.

Прирост энергии наиболее высокий (МДж/га) в вариантах с внесением 0,8 и 1,0 тонн углей и составляет 5395,7-5395,7. На единицу энергетических затрат получено от 2,9 до 5,8 единиц энергии, содержащейся в прибавке урожая от удобрений. В вариантах с совместным внесением аммиачной селитры биоКПД больше единицы при использовании 0,6-1,2 т/га углей и технология возделывания яровой пшеницы эффективна с энергетической точки зрения в агрофирме «Тисуль», т.к. энергоотдача превышает единицу.

Яровая пшеница Ирень в вариантах с внесением окисленных бурых углей в лесостепи Кузнецкой котловины на примере АОЗТ «Береговой» дала прибавку зерна 3,4-11,3 ц/га и окупаемость составила 7-17 ц зерна на 1 тонну окисленного бурого угля, за счет органических удобрений получено 14,5-48,3% урожая зерна.

Расчет экономической эффективности использования окисленных бурых углей в посевах яровой пшеницы в лесостепи Кузнецкой котловины (в ценах 2006 г.) приведены в таблице 4.7.

Рентабельность применения окисленных бурых углей на опытных делянках варьирует от 62 до 101 %. Рентабельность в опыте в лесостепи Кузнецкой котловины выше, чем в опыте в «островной» лесостепи, что связано с более высокими прибавками урожая зерна и большей окупаемостью. Приведем расчет биоэнергетической эффективности производства яровой пшеницы и применения окисленных бурых углей при ее возделывании в АОЗТ «Береговой» (табл. 4.8). Прирост энергии наиболее высокий (16061,7 МДж/га) в варианте с внесением 1 тонны углей. На единицу энергетических затрат получено от 5,6 до 9,7 единицы энергии, содержащейся в прибавке урожая от органических удобрений. С энергетической точки зрения технология возделывания яровой пшеницы в АОЗТ «Береговой» во всех вариантах эффективна. Таким образом, дозы окисленных углей в опытах в почвенных округах определяются комплексом факторов. Использование этих удобрений при возделывании яровой пшеницы экономически целесообразно и эффективно, что подтверждается агрономической, экономической и энергетической эффективностью. 1. Окисленные каменные угли Таллинского месторождения по агрохимическим свойствам пригодны для использования в качестве гуминовых удобрений, так как они содержат большое количество высокогумусированного органического вещества, общего азота и обладают высокой емкостью поглощения. Повышенное содержание в них подвижных форм меди, свинца, никеля и хрома должно учитываться при расчете доз внесения. 2. Окисленные бурые угли Тисульского месторождения содержат 33,2% гуминовых кислот, имеют высокое содержание общего азота, очень высокую емкость поглощения. Повышенное содержание в них марганца и хрома не являются препятствием для применения в качестве удобрений в дозах до 1,2 т/га. 3. Внесение окисленных бурых углей на черноземах выщелоченных в дозах до 1,2 т/га положительно влияет на свойства почв, уменьшает кислотность, увеличивает содержание в почвах подвижного калия и фосфора, снижает концентрацию подвижных форм тяжелых металлов: кадмия, свинца, цинка и хрома.