Что такое коммерческая скорость бурения. Цикл строительства скважин. Выбор типа ВВ

М./час или м/мес.

Где: Т мес -количество часов в месяце, Н мес . - количество метров, пробуренных в течение календарного месяца, Коммерческая скорость практически совпадает с производительностью буровой бригады и является основным показателем эффективности работы буровой бригады и производственной организации в целом.

Коммерческая скорость отличается от технической тем, что, она учитывает все затраты времени, включая непроизводительные, связанные с плохой организацией работ, слабой дисциплиной и т.п. Чем больше разница между V Т. И V к. Тем хуже работает буровая бригада и руководители буровых работ. Было бы полезно ввести коэффициент эффективности руководителя буровой

И умножать на него зарплату руководителя буровых работ.

5.Цикловая скорость.

или

Где: Н скв. - глубина скважины, Т скв. - время на все работы по сооружению скважины,Н бур. - объем буровых работ на данном участке,т 6ур - время на бурение всего объёма работ. Определяет количество метров, пробуренных за календарный месяц при включении всех работ по сооружению скважины, от подготовки площадки до перевозки и рекультивации по окончании бурения. Цикловая скорость используется при планировании геологоразведочных работ, а ее сравнение с коммерческой, показывает долю затрат времени на подготовительные и завершающие бурение работы.

6. Парковая скорость

(м/станок в год)

Определяется как суммарный метраж бурения в год в данной геологоразведочной организации деленной на число буровых станков, имеющихся в этой организации, характеризует эффективность использования стеночного парка.

Себестоимость 1 метра бурения - С ст.

Вторая сторона эффективности процесса это стоимость работ - для бурения это себестоимость бурения 1 метра скважины. Соотношение значимости себестоимости и производительности как критериев эффективности, главным образом. Связано с заданным временем на бурение, памятуя, что «время -деньги», В большинстве случаев максимальная производительность соответствует и минимальной себестоимости, однако иногда повышение производительности может быть достигнуто за счет высоких затрат на более дорогие инструменты, оборудование, очистные агенты. В таких случаях необходимо считать, что выгоднее в конкретном случае - повысить производительность за счет высокой себестоимости или снизить себестоимость за счет меньшей производительности. Приблизительно величина себестоимости 1 м. Бурения может быть определена по выражению:

Руб./м

Где:с - стоимость 1 часа буровых работ, включая амортизацию, без затрат на ПРИ, руб/час (определяется плановым отделом с учетом местных условий)

Ц - цена породоразрушающего инструмента, руб.; hпри . - проходка на коронку (долото) м; Д - стоимость дополнительных затрат при сооружении скважины, руб.

Из анализа выражения себестоимости следует, что при прочих равных, себестоимость снижается при росте V р. И проходки на коронку -h к. , ещё раз доказывая, что повышение рейсовой скорости эффективно во всех отношениях. Другой вывод из анализа себестоимости - важная роль ресурса ПРИ, учитывая, что его стоимость при бурении в твёрдых породах составляет значительную долю (до 50 % и более) себестоимости 1 метра бурения. Поэтому, решая задачи технологии бурения твёрдых и особо твёрдых пород, необходимо особое внимание уделять износу ПРИ, в первую очередь, алмазного, принимая все меры к снижению его износа, даже если это приведет к частичной потере скорости бурения.

Качество. Третья сторона процесса, определяющая эффективность выполнения поставленной задачи. Для геологоразведочного бурения качество определяется двумя основными показателями - полнотой геологической информации (выход керна, отбор шлама, отбор боковых проб, геофизические исследования и т.п.) И точностью проведения трассы скважины по заданной траектории, т.е. Получение геологической информации из заданной точки горного массива. Обычно геологическая служба задает минимально допустимые показатели, при нарушении которых скважина не решает поставленных задач и уходит в браке. Из этих соображений для обеспечения необходимого качества в ряде случаев приходится применять специальные режимы бурения с использованием специальных технических средств и технологических приемов, даже если это приводит к существенному снижению производительности и росту себестоимости бурении

В настоящее время в практике бурения геологоразведочных скважин преобладает бурение снарядами со съемным керноприемником – ССК. При бурении снарядами ССК выделяется два комплекса операций (по времени и по углубке) - это "рейс" от спуска и до подъема всего бурового снаряда (включая все вспомогательные операции) и так называемый "цикл " от спуска до извлечения керноприемника без подъема бурильных труб

Употребление термина "цикл" для операции бурения от спуска керноприемника до заполнения керном и подъемом керноприемника вызывает определенное затруднение, связанное с тем, что термин "цикл" уже закреплен в словарях, в виде термина «цикловая скорость».

На наш взгляд, термин "цикл" следует оставить за временем сооружения скважины («цикловая скорость»), а для интервала бурения снарядом со съемным керноприемником, связанным с наполнением и подъемом керноприемника придумать другой термин, например, «керноприемный рейс ». Для интервала от спуска до подъема всего снаряда применять термин «полный рейс »,

При бурении снарядами ССК измерение и оценка рейсовой скорости бурения усложняется по сравнению с бурением простыми снарядами. При определении полной рейсовой скорости (или рейсовой скорости полного рейса), вспомогательное время будет складываться из общего вспомогательного времени, связанного со спуском и подъемом всего бурового снаряда, включая все вспомогательные работы – Твсп, и суммы времени на вспомогательные работы, связанные со спуском и подъемом керноприемника во всех керноприемных рейсах -Σ tвсп . Время бурения полного рейса равно сумме затрат времени на бурение в керноприемных рейсах (затратами времени на перекрепление можно пренебречь, а время на наращивание относится к вспомогательному времени керноприемного рейса), т.е.Σt бур. -время на бурение в полном рейсе; Σt всп – время на вспомогательные операции во всех керноприемных рейсах.

Тогда Vр = где Hр =Σ hкпр.

Для одновременного измерения и регистрации пяти параметров бурения: полной рейсовой (1) и керноприемной рейсовой скоростей (2), а также текущей механической скорости бурения (3) и полной (с начала полного рейса) (4) и текущей проходки в каждом керноприемном рейсе (5), может быть использован простой прибор с использованием одного датчика текущей проходки на принципе лазерного дальномера. Например, может использоваться лазерный дальномер типа Leica DISTO D8, который имеет технологию беспроводной связи, встроенный Bluetooth, позволяющий передавать полученную информацию сразу на компьютер, где переданная информация подвергается обработке в составленной программе деления измеряемой проходки на соответствующие интервалы времени и затем распечатывается на ленте самописца. Эффективность использования такого прибора будет только при условии непрерывной регистрации всех указанных пяти параметров и их графического изображения для всего полного рейса.



Примерный график регистрации всех пяти параметров эффективности полного рейса при бурении снарядом ССК приведен на рисунке, рис.69.

Рис. 69

График регистрации параметров эффективности полного рейса бурения ССК.

Эффективность измерения, регистрации и анализа величины рейсовой скорости бурения снарядами ССК можно увидеть на примере оценки прироста рейсовой скорости при увеличении углубки за керноприемный рейс. При бурении отечественными снарядами КССК -76 углубка за керноприемный рейс может быть 3, 4,5 и 6 метров, снарядами ССК – 1.7, 3,2 и 4,7 метров. При использовании зарубежных снарядов фирмы Longyear при бурении глубоких скважин углубка за керноприемный рейс обычно составляет 3 метра. Современные станки с подвижным вращателем для высокооборотного алмазного бурения имеют подвижный вращатель с проходным зажимным патроном, позволяющим наращивать бурильные трубы через верх. При этом длина наращиваемой трубы может быть больше чем ход вращателя (ход обычно до– 3,25 метра), т.е. может быть использована бурильная труба длиной 6 метров (или свеча из двух труб по 3 метра). Следовательно, можно сравнивать эффективность бурения при использовании керноприемных и бурильных труб длиной три и шесть метров.

Для такого приблизительного сравнения примем:

Геологические условия стабильные, без осложнений;

Проходка на алмазную коронку и углубка за полный рейс – 90 метров;

Механическая скорость бурения – 6 м/час;

Вспомогательное время полного рейса – 4 часа;

Вспомогательное время керноприемного рейса – 0,6 часа;

h кпр = 3 метра – 30;

Число керноприемных рейсов при h кпр =6 метров – 15.

Vр 3 = м/чVр 6 = м/ч

Отношение Vр 6 /Vр 3 = 1,83, т.е. при увеличении проходки за кернопремный рейс с 3 до 6 метров при бурении снарядами ССК рейсовая скорость и, следовательно, производительность вырастет в 1.8 раза. При использовании регистрирующего прибора это отношение может быть увидено в деталях при сравнении соответствующих диаграмм для оптимизации процесса бурения.

В цикл строительства скважины входят:

1) подготовительные работы;

2) монтаж вышки и оборудования;

4) процесс бурения;

5) крепление скважины обсадными трубами и ее тампонаж;

6) вскрытие пласта и испытание на приток нефти и газа.

В ходе подготовительных работ выбирают место для буровой, прокладывают подъездную дорогу, подводят системы электроснабжения, водоснабжения и связи. Если рельеф местности неровный, то планируют площадку.

Монтаж вышки и оборудования производится в соответствии с принятой для данных конкретных условий схемой их размещения. Оборудование стараются разместить так, чтобы обеспечить безопасность в работе, удобство в обслуживании, низкую стоимость строительно-монтажных работ и компактность в расположении всех элементов буровой.

Различают следующие методы монтажа буровых установок : поагрегатный, мелкоблочный и крупноблочный.

При поагрегатном методе буровая установка собирается из отдельных агрегатов, для доставки которых используется автомобильный, железнодорожный или воздушный транспорт.

При мелкоблочном методе буровая установка собирается из 16...20 мелких блоков. Каждый из них представляет собой основание, на котором смонтированы один или несколько узлов установки.

При крупноблочном методе установка монтируется из 2...4 блоков, каждый из которых объединяет несколько агрегатов и узлов буровой.

Подготовка к бурению включает устройство направления и пробный пуск буровой установки.

В ходе пробного бурения проверяется работоспособность всех элементов и узлов буровой установки.

Процесс бурения начинают, привинтив первоначально к ведущей трубе квадратного сечения долото. Вращая ротор, передают через ведущую трубу вращение долоту.

Во время бурения происходит непрерывный спуск (подача) бурильного инструмента таким образом, чтобы часть веса его нижней части передавалась на долото для обеспечения эффективного разрушения породы.

В процессе бурения скважина постепенно углубляется. После того как ведущая труба вся уйдет в скважину, необходимо нарастить колонну бурильных труб. Наращивание выполняется следующим образом. Сначала останавливают промывку. Далее бурильный инструмент поднимают из скважины настолько, чтобы ведущая труба полностью вышла из ротора. При помощи пневматического клинового захвата инструмент подвешивают на роторе. Далее ведущую трубу отвинчивают от колонны бурильных труб и вместе с вертлюгом спускают в шурф - слегка наклонную скважину глубиной 15... 16 м, располагаемую в углу буровой.

После этого крюк отсоединяют от вертлюга, подвешивают на крюке очередную, заранее подготовленную трубу, соединяют ее с колонной бурильных труб, подвешенной на роторе, снимают колонну с ротора, опускают ее в скважину и вновь подвешивают на роторе. Подъемный крюк снова соединяют с вертлюгом и поднимают его с ведущей трубой из шурфа. Ведущую трубу соединяют с колонной бурильных труб, снимают последнюю с ротора, включают буровой насос и осторожно доводят долото до забоя. После этого бурение продолжают.


В ходе работы на забое скважины долото изнашивается. Когда дальнейшая работа его становится малоэффективной, долото поднимают из скважины, заменяют новым, после чего бурильный инструмент вновь спускают в скважину.

При бурении на нефть и газ порода разрушается буровыми долотами, а забой скважин обычно очищается от выбуренной породы потоками непрерывно циркулирующей промывочной жидкости (бурового раствора), реже производится продувка забоя газообразным рабочим агентом.

Целью тампонажа затрубного пространства обсадных колонн является разобщение продуктивных пластов.

Хотя в процессе бурения продуктивные пласты уже были вскрыты, их изолировали обсадными трубами и тампонированием, чтобы проникновение нефти и газа не мешало дальнейшему бурению. После завершения проходки для обеспечения притока нефти и газа продуктивные пласты вскрывают вторично.

Для этого обсадную колонну и цементный камень перфорируют .

В настоящее время, в основном, используют перфораторы двух типов: стреляющие (торпедного и пулевого типов) и гидроабразивного действия.

После перфорации скважину осваивают , т.е вызывают приток в нее нефти и газа.

Для этого уменьшают давление бурового раствора на забой одним из следующих способов:

1) промывка - это замена бурового раствора, заполняющего ствол скважины после бурения, более легкой жидкостью - водой или нефтью;

2) поршневание (свабирование) - это снижение уровня жидкости в скважине путем спуска в насосно-компрессорные трубы (НКТ) и подъема на стальном канате специального поршня (сваба). Поршень имеет клапан, который открывается при спуске и пропускает через себя жидкость, заполняющую НКТ. При подъеме же клапан закрывается, и весь столб жидкости, находящийся над поршнем, выносится на поверхность.

От использовавшихся прежде способов уменьшения давления бурового раствора на забой, продавливания сжатым газом и аэрации (насыщения раствора газом) в настоящее время отказались по соображениям безопасности.

Устье скважины оснащено колонной головкой (колонная обвязка). Колонная головка предназначена для разобщения межколонных пространств и контроля за давлением в них. Ее устанавливают на резьбе или посредством сварки на кондукторе. Промежуточные и эксплуатационные колонны подвешивают на клиньях или муфте.

Основные технические характеристики колонных головок отражены в их шифрах.

Начало бурения скважины — момент первого спуска буриль-ной колонны для проходки, а окончание бурения — момент окон-чания выброса бурильных труб на мостки после промывки сква-жины и испытания колонны на герметичность.

Для определения продолжительности наиболее трудоемкого этапа — бурения скважины — составляется баланс календарного времени.

Баланс календарного времени включает в себя следую-щие элементы:

1. Производительное время бурения t пр , в том числе :

Время на проходку — t м — механическое бурение, t сп — спуско-подъемные работы;

Время на подготовительно-вспомогательные работы (смена до-лота, приготовление глинистого раствора и т.д.) t пвр;

Время на крепление скважины (спуск обсадной колонны и ее цементирование) t кр.

t пр = t м + t сп + t пвр + t кр

2. Время на ремонтные работы (проведение профилактики обо-рудования, устранение неисправностей, возникающих в период бурения и крепления скважины) t рем.

3. Время на ликвидацию осложнений, возникающих в стволе скважины по геологическим причинам, t ос.

4. Непроизводительное время t H , включающее в себя :

Время на ликвидацию аварий t а;

Потери времени из-за простоев по организационно-техничес-ким причинам t п.

Баланс календарного времени бурения и крепления имеет сле-дующий вид:

Т б.к = t м + t сп + t пвр + t кр + t рем + t ос + t а + t п

Баланс календарного времени и его отдельные элементы слу-жат основой определения различных скоростей бурения, опреде-ляющих темпы строительства скважины.

Техническая скорость бурения (v Т) определяется проходкой за 1 мес производительных работ буровой установки (м/ст.-мес):

где Н п — общая проходка (плановая или фактическая) за опреде-ленный период времени (глубина скважины), м;

720 — продол-жительность 1 ст. - мес бурения, ч.

Показатель технической скорости используется для сравнитель-ной оценки эффективности новой техники, различных способов бурения.

Коммерческая скорость бурения определяется проходкой за 1 мес работы буровой установки (м/ст.-мес):

На величину коммерческой скорости влияют факторы технико-технологического и организационного характера. Повышение v K требует сокращения и ликвидации непроизводительного време-ни, уменьшения абсолютных затрат производительного времени путем ускорения проведения операций. Это может быть достигну-то на основе совершенствования буровой техники и технологии, механизации трудоемких операций, улучшении организации про-изводства.

Цикловая скорость строительства скважины (м/ст. - мес) оп-ределяется проходкой за время цикла сооружения скважины:

где Т ц — время цикла сооружения скважины, ч.

Цикловая скорость характеризует технический и организацион-ный уровни буровых работ, отражает эффективность совместного действия бригад, участвующих в цикле сооружения скважины (выш-комонтажных буровых бригад и бригад по испытанию скважин).

Техническая скорость бурения определяется с учетом способа бурения, технических параметров бурового станка и показателя буримости породы.

Техническую скорость шарошечного бурения можно определять по формуле

где P о - усилие подачи, Кн; принимается 80…90% от максимальной из технической характеристики станка;

n - частота вращения става, с -1 ; принимается 60…70% от максимальной из технической характеристики станка;

d - диаметр скважины, м;

П Б - показатель трудности бурения.

Сменная и годовая производительности станка

Сменная производительность станка может быть рассчитана по формуле

где Tс, Tп.з . и - продолжительность, соответственно, смены, подготовительно-заключительных операций и регламентированных перерывов в смене, часов;

Tп.з. + Tр = 0,5…1,0час (2.3)

t о и t в - соответственно, основные и вспомогательные операции на бурение 1 п.м. скважины

(2.4)

где V Б - техническая скорость бурения,м/час.

При определении величины t в необходимо учитывать способ производства буровых работ и трудность бурения породы.

Так как трудность бурения породы равен – 8, для шарошечного бурения t в принимается равным – 2минуты.

Годовая производительность станка определяется по формуле

Q б.год = N см · Q б.см ·K год =915·3,6·0,8=2635,2м/год (2.5)

где K год - среднегодовой коэффициент использования сменного фонда рабочего времени;

N см - число смен в году.

При количестве рабочих дней в году равном 305, величина N см составляет 915, а значение коэффициента K год можно принимать в пределах от 0,8 до 0,85.

Расчет параметров взрывных работ

Выбор типа ВВ

Проектный удельный расход ВВ

Проектный расход ВВ определяется по формуле

q п = q э ·K вв ·K д ·K т ·K сз ·K сп ·K v = 48·0,9·0,8·1,4·1·5·0,17=41г/м 3 (2.6)

где q э - эталонный расход эталонного ВВ - определяется по категории трудности взрывания, q э =8·6=48г/м 3 ;



K вв - коэффициент пересчета расхода эталонного ВВ к расходу реального ВВ;

K д - коэффициент, учитывающий требуемую степень дробления;

K т - коэффициент, учитывающий трещиноватость взрываемого массива;

K сз - коэффициент, учитывающий сосредоточенность скважинного заряда;

K сп - коэффициент, учитывающий число свободных поверхностей;

K v - коэффициент, учитывающий высоту уступа.

Значения K вв для гранулотола составляет – 0.9.

Коэффициент K д определяется по формуле

(2.7)

где dср – требуемый средний размер куска породы, м.

Величина dср в зависимости от применяемого выемочно-погрузочного оборудования определяется формуле

(2.8)

где E - емкость ковша экскаватора, м 3 .

Коэффициент K т можно определять по формуле

K т = 1.2·l ср + 0.2 =1,2·1+0,2=1,4м (2.9)

где l ср - средний размер отдельностей в массиве,м.

В зависимости от трещиноватости пород l ср для крупноблочных равен – 1. Коэффициент K сз для скважин диаметром 200 мм принимаю равным – 1. Коэффициент K сп для короткозамедленного взрывания принимаю равным – 5.

Коэффициент K v при Н у 15 м определяется по формуле

(2.10)

где

Параметры сетки скважин

Для короткозамедленного взрывания предельная величина сопротивления по подошве (С.П.П.), равная горизонтальному расстоянию от нижней бровки уступа до оси скважины, Wпр определяется по формуле

Wпр = Wод (1.6 - 0.5 m)= 9,5·(1,6-0,5·1)=10,4 м (2.11)

где Wод - величина Л.С.П.П. для одиночного заряда.

По условию качественной проработки подошвы уступа и предотвращения образования порогов величина Wод определяется по формуле

где K Т - коэффициент трещиноватости;

D - плотность заряжания, кг/дм 3 ;

g - объемный вес породы, т/м 3 ;

- диаметр скважины, м;

Kвв - коэффициент пересчета расхода ВВ.

По Правилам безопасности запрещается производить работы в пределах призмы возможного обрушения, т.е. на расстоянии от верхней бровки уступа, меньшем установленного ПБ (3 метра). Следовательно, величина Wпр должна удовлетворять неравенству

Wпр ³ Hу (ctg aу - ctg bс) + 3 =18·(ctg 78 0 – ctg90 0)+3=6,8м (2.13)

10,4 ³ 6,8м

где - угол откоса уступа, град.,aу=78 0 ;

- угол наклона скважины к горизонту, град.,bс=90 0 .

Основными параметрами сетки скважин являются:

a - расстояние между скважинами в ряду, м;

b - расстояние между рядами скважин, м.

Величина a определяется по формуле

a = m Wпр =1·10,4=10,4м (2.14)

Значение b определяется в зависимости от вида сетки расположения взрывных скважин.

При шахматной сетке b = 0,85а =8,8м

Объем породы, взрываемой одной скважиной определяется:

для скважин первого ряда

V 1 = W пр · a ·H у = 10,4·10,4·18=1947м 3 ; (2.15)

для скважин последующих рядов

V n = a· b· H у = 10,4·8,8·18=1647м 3 (2.16)

где - высота взрываемого уступа, м.

М./час или м/мес.

Где: Т мес -количество часов в месяце, Н мес . - количество метров, пробуренных в течение календарного месяца, Коммерческая скорость практически совпадает с производительностью буровой бригады и является основным показателем эффективности работы буровой бригады и производственной организации в целом.

Коммерческая скорость отличается от технической тем, что, она учитывает все затраты времени, включая непроизводительные, связанные с плохой организацией работ, слабой дисциплиной и т.п. Чем больше разница между V Т. и V к. , тем хуже работает буровая бригада и руководители буровых работ. Было бы полезно ввести коэффициент эффективности руководителя буровой

Кэф. = Vк/Vт

и умножать на него зарплату руководителя буровых работ.

5.Цикловая скорость.

или

Где: Н скв. - глубина скважины, Т скв. - время на все работы по сооружению скважины,Н бур. - объем буровых работ на данном участке,Т 6ур - время на бурение всего объёма работ. Цикловая скорость используется при планировании геологоразведочных работ, а ее сравнение с коммерческой, показывает долю затрат времени на подготовительные и завершающие бурение работы.

6. Парковая скорость

(м/станок в год)

Определяется как суммарный метраж бурения в год в данной геологоразведочной организации деленной на число буровых станков -n, имеющихся в этой организации, характеризует эффективность использования стеночного парка.

Себестоимость 1 метра бурения - С ст.

Вторая сторона эффективности процесса это стоимость работ - для бурения это себестоимость бурения 1 метра скважины. Соотношение значимости себестоимости и производительности как критериев эффективности, главным образом, связано с заданным временем на бурение, памятуя, что «время - деньги», В большинстве случаев максимальная производительность соответствует и минимальной себестоимости, однако иногда повышение производительности может быть достигнуто за счет высоких затрат на более дорогие инструменты, оборудование, очистные агенты. В таких случаях необходимо считать, что выгоднее в конкретном случае - повысить производительность за счет высокой себестоимости или снизить себестоимость за счет меньшей производительности. Приблизительно величина себестоимости 1 м бурения может быть определена по выражению:

руб./м

Где:с - стоимость 1 часа буровых работ (зарплата, расход материалов, амортизация и другие) без затрат на ПРИ, руб./час (определяется плановым отделом с учетом местных условий). Ц - цена породоразрушающего инструмента, руб., hпри . - проходка на коронку (долото) м; Д - стоимость дополнительных затрат при сооружении скважины, руб.

Из анализа выражения себестоимости следует, что при прочих равных, себестоимость снижается при росте V р. и проходки на ПРИ-h при . , ещё раз доказывая, что повышение рейсовой скорости эффективно во всех отношениях. Другой вывод из анализа себестоимости - важная роль ресурса ПРИ, учитывая, что его стоимость при бурении в твёрдых породах составляет значительную долю (до 50 % и более) себестоимости 1 метра бурения. Поэтому, решая задачи технологии бурения твёрдых и особо твёрдых пород, необходимо особое внимание уделять износу ПРИ, в первую очередь, алмазного, принимая все меры к снижению его износа, даже если это приведет к частичной потере скорости бурения.

Качество. Третья сторона процесса, определяющая эффективность выполнения поставленной задачи. Для геологоразведочного бурения качество определяется двумя основными показателями - полнотой геологической информации (выход керна, отбор шлама, отбор боковых проб, геофизические исследования и т.п.) и точностью проведения трассы скважины по заданной траектории, т.е. Получение геологической информации из заданной точки горного массива. Обычно геологическая служба задает минимально допустимые показатели, при нарушении которых скважина не решает поставленных задач и уходит в браке. Из этих соображений для обеспечения необходимого качества в ряде случаев приходится применять специальные режимы бурения с использованием специальных технических средств и технологических приемов, даже если это приводит к существенному снижению производительности и росту себестоимости бурении

Вывод: технология бурения должна разрабатываться с учетом всех показателей эффективности в их оптимальном сочетании.

Три фактора определяют эффективность:

- производительность;

- себестоимость;

- качество.

1. Производительность бурения определяется в первую очередь:

Рейсовая скорость и коммерческая скорость

2. Себестоимость: