Структурная схема проектора. Как работает LCD-проектор. Оптическая схема трехматричного DLP-проектора

Проектор становится все более популярной составляющей частью домашнего кинотеатра. По габаритам он не превышает небольшого чемоданчика, а по размерам создаваемого изображения превосходит любую плазменную или ЖК-панель. Стоимость проекторов неуклонно снижается, и подходящую модель для использования дома можно купить меньше чем за $2000, что ниже цен на ЖК или «плазму». Как устроен проектор внутри, чего от него ждать и какая технология создания изображений лучше — вопросы, которые задают себе многие потенциальные покупатели проектора. Мы постараемся рассказать об этом.

5 технологий проекторов: выбираем лучшую

Проекторы на ЭЛТ и лазерах 3 ЖК-матрицы лучше, чем одна

В проекторе нет самой главной части. Все его составляющие оказывают серьезное влияние на качество картинки, и все они так или иначе совершенствуются с течением времени. Наибольшее внимание уделяется собственно технологии, формирующей изображение, однако качество оптики и электронная «начинка» могут оказать на картинку не меньшее влияние.

Оптические системы в проекторах не менее, а, зачастую и более сложны, чем в цифровых или пленочных фотокамерах. Качественную же оптику в мире делает не так много компаний, и иногда изображение даже в проекторах одного производителя может создаваться объективами с разными логотипами — от Fuji до Carl Zeiss. Электронная «начинка» также основывается на микросхемах именитых производителей, и там можно увидеть такие логотипы как Faroudja, Philips или Zoran. Электроника приобретает тем более важное значение, чем большее распространение получают источники сигналов высокой четкости (HDTV). Видеовход HDMI, который является аналогом компьютерного интерфейса DVI, также получает все большее распространение в бытовых DVD-плеерах (об одном из них мы недавно писали). Сегодня все более доступны и записи с высоким разрешением картинки, до 720 р.

Важной частью проектора является и лампа, создающая световой поток, равномерный по световым свойствам. При покупке проектора обязательно следует учитывать срок службы лампы — ее стоимость обычно доходит до $500, а срок службы не так велик, как того бы хотелось.

В соответствии со сложившимися стереотипами мы все-таки расскажем больше именно о том, что «на слуху», то есть о технологиях формирования изображения — с использованием электронно-лучевых трубок, жидкокристаллических матриц или микромеханических устройств.

Большинство проекторов способно выдавать великолепную «картинку», но вынуждено работать с не самым идеальным источником в виде аналогового сигнала. Часто проектор получает черезстрочную развертку, аналогичную применяемой при телевизионном вещании, когда изображение формируется за два прохода, с пропуском строк «через одну». Для этого электроника проектора должна иметь возможность адаптировать сигнал перед его выводом на проецирующую систему. В других случаях необходимо создать из 24 кадров, получаемых в секунду, 30 кадров. За это отвечает система цифровой обработки сигнала, которая повышает четкость изображения и избавляет его от «лесенок». В недорогих системах производители применяют чипы собственной разработки или предыдущих поколений специализированных процессоров, в более дорогих решениях используются чипы сторонних производителей. Одним из самых известных и качественных решений является чип с поддержкой технологии DCDi компании Faroudja — он (или его аналог) обязательно должен быть интегрирован в любой кинотеатральный проектор. У него существует конкурент, который сегодня «отъедает» все более заметную долю и имеет практически идентичные характеристики — чип от компании Zoran.

Электронно-лучевые трубки

Эта технология формирования изображения — пожалуй, самая старая и, казалось бы, знакомая всем. Ведь в ней картинка создается привычными всем кинескопами, то есть ЭЛТ. Но принципы работы ее заметно отличаются от домашних телевизоров. Во-первых, в таком проекторе сразу три электронно-лучевых трубки. Каждая из них отвечает за свой цвет — красный, синий или зеленый, из которых и формируется изображение. Нужный цвет обычно формируется цветофильтром, стоящим позади трубки. Выбор цветов основан на том, что именно из этих трех основных можно сформировать все остальные цвета спектра, и в системе цветности RGB (Red Green Blue) работает великое множество устройств, формирующих видеосигнал.

Предназначение ЭЛТ-проекторов — кинозалы и дорогие домашние кинотеатры

Световой поток из трех основных цветов проходит через относительно несложную систему линз и фокусируется на экране, создавая полноцветную картинку. Такие проекторы имеют отличную цветопередачу — технологии производства трубок отточены за десятилетия, а также отсутствие видимого зерна на картинке в связи с синтетическим характером каждого участка изображения. Также ЭЛТ-проекторы отлично передают и черный цвет, с чем у многих других систем явные проблемы.


ЭЛТ-проекторы могут быть симпатичными

Главными трудностями и недостатками системы являются большой размер и вес — каждая трубка имеет диаметр более 10 см и требует мощного охлаждения. Кроме того, качественное изображение формируется путем тщательного сведения трех картинок на одном экране, исключительно сложно в настройке и не позволяет быстро переместить проектор ни на сантиметр после настройки. Цена таких проекторов запредельна по сегодняшним меркам — много выше $10 тыс. Некоторым недостатком является не самая высокая яркость таких систем, что вынуждает использовать затемненные помещения. Однако для качественного домашнего кинотеатра такие проекторы до сих пор остаются одним из лучших решений. Хороши они так же и при установке «на века», то есть когда они устанавливаются на несколько лет и не планируются к перемещению.

Лазерные проекторы

В некоторой степени наследниками электронно-лучевых трубок являются лазерные проекторы, в которых изображение формируется за счет излучения трех (иногда больше) лазеров. Наследниками — потому, что матрица лазеров формирует три луча тех же цветов, которые потом смешиваются. Изображение создается очень сложной системой фокусировки и развертки, в которой находится специальная система зеркал. По своей сути формирование изображения таким проектором подобно картинке на экране ЭЛТ телевизора — лазерный луч «обегает» проекционный экран сверху вниз до 50 раз в секунду, и глаз человека воспринимает получившуюся картину как единое целое.

Реалистичное изображение формируется при этом практически на любой, в том числе и неровной, поверхности, а его характеристики достаточно высоки. С 2000 года, когда началось серийное производство таких проекторов, они стали выдавать более качественную картинку, но все еще остаются проблемы с цветопередачей, хотя изображение и обладает впечатляющими показателями контраста и яркости.

Такие проекторы пока остаются в большей степени дорогими профессиональными инструментами — они излишне велики и потребляют много энергии. Однако их конструкция позволяет разделить излучающую батарею лазеров с большим тепловыделением и проецирующую часть. Кроме того, время жизни лазера заметно превосходит срок службы лампы традиционных проекторов, а энергии при сопоставимых параметрах яркости расходуется меньше. Ну, и самым главным достоинством лазерных проекторов является их способность создавать изображения на огромных экранах -диагональ может быть до нескольких десятков метров.

Существуют еще и такие малоизвестные устройства как лазерные ЭЛТ, в которых лазерный луч выбивает световой поток из люминофора, но они мало распространены и находятся на стадии разработки коммерческих прототипов (такие разработки ведутся и в России).

ЖК-матрицы

Традиционная и одна из самых старых технологий, применяющихся в проекторах — использование ЖК-матрицы «на просвет». Самая заслуженная и самая дешевая технология до сих пор остается самой распространенной — проекторы, созданные на основе одной LCD-матрицы неплохо подходят для образовательных целей, работы в презентационных комнатах при показе статичных слайдов и так далее. Однако в домашнем использовании они практически бесполезны, так как картинка, создаваемая ими, часто получается недостаточно четкой, к тому же движущиеся объекты выглядят не лучшим образом.

Дело здесь в том, что свет лампы, проходя сквозь LCD-матрицу как через диафильм или кинопленку, а затем через объектив, проходит через множество слоев матрицы и цветового фильтра. Готовое изображение, проецирующееся на экран, в итоге часто имеет эффект «мозаичности». Кроме того, проблема черного цвета проявляется здесь в полной красе. Так как ЖК-матрицы работают на просвет, то создать абсолютно непрозрачный участок в условиях яркого и мощного освещения они попросту не способны. Поэтому и часто черный цвет получается больше похожим на серый. По этой же причине ЖК-матрицы с трудом справляются с полутонами — количество градаций серого цвета не так велико, как это необходимо.

Более качественных результатов позволяет добиться технология, в которой вместо одной ЖК-матрицы используются сразу три.

Технология трех ЖК-матриц была призвана стать ответом на появление DLP-проекторов, явно превосходящих по качеству изображения большинство устройств, основанных на жидкокристаллической матрице. Основным «двигателем» ассоциации компаний, активно работающих над популяризацией этой технологии, является один из самых крупных производителей ЖК-матриц в мире — компания Seiko Epson.

Три ЖК-матрицы позволяют создать изображение гораздо лучшего качества, чем при использовании одной матрицы, за счет разделения светового потока и прохождения его только через одну ЖК-панель, а не через три цветофильтра последовательно. Это гарантирует большую яркость и дополнительное качество картинки, особенно в плане четкости.

Система дихроичных зеркал разделяет свет на три составляющих цвета, пропуская каждый через свою ЖК-матрицу, а потом призма собирает все три изображения в одну картинку. Однако и в них сохраняется проблема черного цвета — он опять оказывается скорее серым, чем черным.

Такая технология обладает даже некоторым преимуществом перед однокристальными DLP-проекторами, в которых цвет создается путем последовательного наложения цветов. В 3LCD-проекторах цвет создается одновременно и без использования движущихся частей.

Технология ЖК-панелей отработана немногим хуже ЭЛТ, и новые матрицы со сверхвысоким разрешением уже демонстрируются на выставках, чем не могут похвастаться другие альтернативные технологии.

Микрозеркальная технология DLP

Самой бурно развивающейся технологией, на которой строятся проекторы, можно считать микрозеркальную или DLP-технологию. При ее использовании свет мощной лампы отражается от специального чипа (Digital Mirror Device), содержащего тысячи микрозеркал, каждое из которых отвечает за свой пиксель изображения. Матрица с зеркалами очень миниатюрна, обычно около одного дюйма, и именно на нее и на систему управления приходится большая часть стоимости таких проекторов и телевизоров. Каждое из миллионов микрозеркал управляется индивидуально, и в итоге создается очень четкая и ясная картинка, лишенная мерцания и артефактов, присущих жидким кристаллам. Разработчиком этой технологии и поставщиком всех DMD-матриц и схем управления ими является американская компания Texas Instruments.

Свет на микрозеркала DMD-матрицы попадает через специальный вращающийся светофильтр, имеющий три или четыре грани. На трехцветном светофильтре они окрашены в красный, зеленый и синий цвета, а на четырехгранном добавлена прозрачная грань, оказывающаяся полезной тогда, когда имеются большие неокрашенные участки изображения. Скорость смены всех сочетаний настолько высока, что человеческим взглядом отмечается только цельная картинка, очень яркая и четкая. В последнее время приобретают популярность системы, в которых применяется цветовое колесо с шестью или семью сегментами — качество картинки от этого заметно улучшается и пропадает эффект «радуги», возникающий на резких цветовых границах изображения.

Пикселизация изображения, присущая ЖК-технологии, присутствует и в DLP-проекторах, хотя и в заметно меньшей степени. Дело в промежутках между элементами, формирующими пиксель. Если в ЖК-матрице на неработающие участки матрицы между точками, которые никак не формируют изображение, приходится до 30% площади (в старых матрицах было и до 40%), то в DLP-технологи — не более 10–15%. Учитывая, что эта технология работает не на просвет, а на отражение, некоторые проблемы у такой картинки могут быть с белым цветом, а также с несвоевременным срабатыванием зеркал, т.н. «залипанием».

Не так давно появился и первый HDTV-совместимый микрозеркальный проектор, HD2 Mustang. В нем микрозеркала могут отклоняться уже на 12 градусов в каждую сторону против 10 градусов в чипах предыдущего поколения. Благодаря этому стало возможным более качественно отображать черный цвет — эффективность направления света на светопоглощающую пластину повысилась довольно заметно.

Проекторы и проекционные телевизоры на базе этой технологии наиболее компактны, к тому же позволяют доводить световой поток до потрясающей величины 10 тыс. ANSI-люменов. Существуют разновидности микрозеркальной технологии, несколько отличающиеся по своим принципам от DLP, например iMOD или интерференционные дисплеи, но они пока не отработаны до конца, хотя имеют отличные перспективы. Например, в технологии iMOD отсутствуют цветные фильтры, и она гораздо менее энергоемка.

Технология D-ILA (LCOS)


Технология D-ILA (Digital Direct Drive Image Light Amplifier) является коммерческим развитием технологии LCOS (Liquid Crystal on Silicon — жидких кристаллов на кремнии) и активно развивается разными производителями, в том числе и компанией JVC, которая выпускает на ее основе проекционные системы. Изображение в этой технологии формируется жидкими кристаллами, однако работает она не на просвет, как привычные ЖК-матрицы, а на отражение, и иногда, для упрощения понимания ее сути, технология называется «отражающими жидкокристаллическими панелями». Главное отличие от обычной ЖК-матрицы в том, что вся электронная «начинка» расположена за слоем жидких кристаллов под отражающими электродами, а не между ячейками. Это обеспечивает лучший коэффициент заполнения — изображение формируется на большей площади матрицы, и незадействованной остается минимальная площадь. Световой поток формируется несильным источником света, а потом усиливается специальной лампой, отчего и происходит название технологии.

В результате граница между пикселями практически незаметна, светоотдача матрицы возрастает, а ее нагрев уменьшается. Теоретически контрастность самой матрицы может достигать 2000:1. Оптическая схема, сходная с той, которая используется в обычных ЖК-проекторах, и три матрицы D-ILA позволяют получить полноцветное изображение. Формирование цветов происходит по-разному — так, например, JVC создала голографический фильтр, у других производителей — вращающаяся призма, разделяющая цвета, также существуют и трехчиповые системы, в которых нет движущихся частей.

Эта технология сегодня активно развивается, как и технология трех ЖК-матриц, и позволяет получить изображение, по своим характеристикам схожее с ЭЛТ-проекторами, то есть хорошо воспринимаемое человеческим глазом. С черным цветом эти проекторы справляются также отлично, к тому же данная технология позволяет добиваться очень больших разрешений. До сих пор такие проекторы остаются достаточно тяжелыми и дорогими, однако над началом их производства работают многие компании, и перспективы у этой технологии хорошие.

Будущее технологий

Технология DLP не стоит на месте, как и все остальные. Уже продаются проекторы с многосегментным цветовым колесом, а создатель технологии DLP, компания Texas Instruments, разрабатывает системы, лишенные недостатков цветового колеса. На иллюстрации можно увидеть новый оптический узел со светосмесительной призмой и тремя DLP-матрицами. В нем отсутствует цветовое колесо, а значит, на его основе можно построить проектор, лишенный даже возможности эффекта «радуги». Кроме того, он будет менее шумным за счет исключения того же вращающегося колеса. Стоит отметить, что на сегодняшний день DLP-технология представляется самым явным кандидатом на лидирующие позиции на проекционном рынке. И хотя три ЖК-матрицы обеспечивают не худшее, а зачастую и лучшее качество, именно проекторам на основе DLP уготовано будущее лидеров рынка. Нам же остается лишь надеяться, что замечательные качества других технологий не останутся незамеченными и получат достойное развитие.

В производстве LCD-матриц тоже «процесс идет», пускай и более медленными темпами, чем в других технологиях. Так, в компании Epson активно разрабатывают новые виды матриц на самых различных носителях, уменьшая их размер и увеличивая разрешение. Все чаще в проекторах применяются широкоформатные матрицы — теперь видео с соотношением сторон 16:9 воспроизводится более качественно, тогда как ранее приходилось выключать из работы заметную часть квадратной матрицы и, соответственно, преобразовывать картинку, что плохо сказывалось на ее качестве.

Кроме того, зачастую из сферы внимания покупателей проектора выпадает одна из главнейших составляющих домашнего кинотеатра или презентационной комнаты. Экран, на котором будет проводиться просмотр, важен если не настолько же, как сам проектор, то уж немногим менее. Упомянем лишь, что указанных параметров яркости и контрастности можно достигнуть только на специально подготовленной поверхности, а хороший экран увеличивает контрастность изображения как минимум в полтора раза! В итоге к стоимости проектора следует обязательно приплюсовать минимум $300 на качественный экран. Ну а классные образцы с большими диагоналями могут стоить существенно больше $1000. Но об этом расскажем как-нибудь в следующий раз.

В октябрьском номере S&V за 2001 г. был опубликован первый обзор по технологиям работы систем отображения информации на больших экранах. Что изменилось с тех пор? Наш специальный корреспондент Елена Новикова, посетившая выставку InfoComm"2007 (17-18 июня, Анахейм, штат Калифорния, США), а также постоянный автор Stereo&Video Валерий Самохин рассказывают о новинках проекционных технологий.

Почти все современные видеопроекторы сегодня реализуются по жидкокристаллической (ЖК) или микрозеркальной (DLP) технологии. Почти одновременно, около двух пет назад, были разработаны жидкокристаллические матрицы и микрозеркальный чип DMD (Digital Micromirror Device) DC3 с разрешением FullHD (1920x1080) соответственно компаниями Epson и Texas Instruments. Сегодня ЖК- и DLP-проекторы с таким разрешением выпускаются примерно в одинаковых пропорциях. В секторе проекторов с разрешением выше Full HD большое численное преимущество имеют DLP-аппараты. Однако нельзя утверждать, что микрозеркальная технология одержит когда-либо окончательную победу. Существенный прогресс достигнут и в ЖК-технологии благодаря созданию новых панелей с модуляцией пропускаемого (LCD) и отражаемого (D-ILA, LCOS, SXRD) светового потока, в том числе с разрешением 4К (4096x2160). Таких DMD-чипов пока нет.

Видеопроекторы с модуляцией пропускаемого светового потока
Оптическая схема LCD-проектора показана на рис. 1. Он содержит источник света 1 с охлаждаемым отражателем и дуговой лампой, металлогалогенной (МГЛ) или ксеноновой, оптические фильтры 2, не пропускающие инфракрасное (ИК) и ультрафиолетовое (УФ) излучение, конвертер поляризации 3, дихроичные зеркала 4 и 5, разделяющие световой поток на составляющие первичных цветов В, G, R, и зеркала 6 с внешними покрытиями, отражающими почти 100% попадающего на них света. Корректирующие светофильтры 7 (Trim Filters) обеспечивают точность разделения цветов. Пройдя фильтры 7, составляющие R, G и В попадают на соответствующие ЖК-панели 8, которые модулируют их по интенсивности в соответствии с отображаемыми видеосигналами и пропускают на смесительную призму 9. Здесь они собираются вместе и далее проецируются объективом 10.

Рис. 1. Оптическая система LCD-проектора
Основным недостатком ЖК-проекторов с модуляцией пропускаемого светового потока считается невозможность получения глубины черного, т.е. высокой контрастности изображения. Действительно, при использовании модуляторов классической технологии TN (Twisted Nematic) этот недостаток есть. Обусловлен он тем обстоятельством, что такие модуляторы нормально открыты (пропускают свет в обесточенном состоянии). Получается это благодаря уникальной способности прозрачных, нитевидных молекул TN ориентироваться в тонком слое вдоль профилирующих канавок контактирующих с ними поверхностей и относительно друг друга в закрученном состоянии, а также вдоль воздействующего на них электрического поля. Как показано на рис. 2, молекулы TN находятся между скрещенными поляризаторами, а их исходная ориентация задана плоскостями поляризации скрещенных поляризаторов. При воздействии возрастающего электрического поля Е, направление напряженности которого перпендикулярно поверхности модулятора, молекулы TN начинают ориентироваться вдоль него, все менее закручиваясь. При напряженности Е выше определенной величины они перестают влиять на поляризацию света, и его прохождение через пиксели прекращается. Проблемы здесь заключаются в нелинейности и неодинаковости характеристик управления прозрачностью пикселей, особенно по достижению их полного запирания. Из-за невозможности полностью перекрыть пропускание света всеми пикселями при подаче одинаковых, но небольших управляющих напряжений, черное поле, проецируемое ЖК-проекторами с такими модуляторами, в затемненном помещении часто воспринимается серым.
На первом этапе совершенствования ЖК-проекторов с указанным недостатком мирились, и основное внимание уделялось увеличению светового потока, что решалось созданием более эффективных источников света и светооптических систем проецирования в целом. Например, большие потери были из-за того, что обесточенные TN-модуляторы пропускают только 50% света (одну составляющую проходящего светового потока со случайной поляризацией), поглощая (превращая в тепло) ортогональную составляющую. Поэтому в ЖК-проекторы стали вводить конвертеры поляризации, преобразующие теряемую составляющую в полезную. Были разработаны также микролинзовые растры (MicroLens Array, MLA), устанавливаемые непосредственно перед TN-модуляторами. Каждая ячейка такого растра фокусирует свет, проходящий через соответствующий пиксель, так, чтобы он не заслонялся непрозрачной поверхностью подложки, занимаемой в пикселе управляющим полевым транзистором.
Особое внимание уделено защите ЖК-модуляторов от ИК- и УФ-излучения дуговых ламп, способного повредить пленки и другие, используемые в них компоненты. В схеме на рис. 1 используется два таких фильтра (2). Один из них отражает ИК-излучение, а другой - блокирует прохождение ультрафиолета в канал синего. Защитные фильтры 2 типа Oerlikon UV-Guard™ характеризуются высокой стабильностью и не затрагивают цвета видимой части спектра.
В борьбе за повышение контрастности было разработано несколько ЖК-модуляторов других технологий. Например, фирмами Hitachi и NEC была разработана технология In-Plane-Switch (IPS), сущность которой поясняется на рис. 3. Здесь ориентация молекул TN всегда находится в плоскости, параллельной поляризаторам, и при отсутствии управляющего напряжения IPS-пиксель не пропускает свет, т.е. является нормально закрытым (черным). Для этого профилирующие канавки, контактирующие с молекулами TN, и сборка ЖК-модулятора IPS производятся так, чтобы его поляризаторы оказались скрещенными с учетом дополнительного сдвига плоскости поляризации, создаваемого из-за естественного закручивания молекул TN. Под действием управляющего напряжения молекулы начинают ориентироваться вдоль электрического поля, поворачиваясь в той же плоскости, и при их повороте на 90° светопропускание достигает максимума (белый). Технологии IPS и ее модификация S-IPS, разработанная совместным предприятием LG-Philips, широко применяются в ЖК-дисплеях и телевизорах.
ЖК-проекторы с модуляцией пропускаемого светового потока постоянно попадают на тестирование в нашу лабораторию, завоевывая призы по результатам тестирования. К ним относится модель Mitsubishi LVP-HC5000 с разрешением 1920x1080 (см. №5"07).

Видеопроекторы с модуляцией отражаемого светового потока

Видеопроекторы технологии D-ILA (Digital-Image Light Amplifier). Оптическая схема одного канала D-ILA показана на рис. 4. Одним из его компонентов является специальное зеркало, расположенное по диагонали узла поляризатора-анализатора. Это зеркало является поляризационным фильтром PBS (Polarized Beam Splitter), выполняющим функции входного и выходного поляризаторов просветных ЖК-панелей. При падении света под углом 45° его составляющая с поляризацией вдоль поверхности зеркала пропускается, а составляющая с ортогональной поляризацией отражается и направляется на ЖК-панель (модулятор) перпендикулярно ее поверхности. Модулятор возвращает свет с внесением сдвигов поляризации в соответствии с управляющими напряжениями на пикселях. Теперь зеркало PBS выполняет функцию анализатора и пропускает модулированную составляющую светового потока в объектив, а исходную в источник света.
Так как при отсутствии управляющих напряжений световой поток на выход указанного оптического канала не поступает, он является нормально закрытым. Это определило особую структуру (Vertical Alignment) расположения пикселей у таких модуляторов, условно показанную на рис. 5 вместе с управляющей характеристикой. На рис. 5 видно, что в обесточенном состоянии молекулы ЖК ориентированы перпендикулярно плоскости модулятора и не влияют на поляризацию отражаемого им светового потока. При увеличении управляющего напряжения (Driving Voltage) выше порогового значения молекулы ЖК начинают поворачивать плоскость поляризации падающего на модулятор светового потока, и в отраженном световом потоке (Light Output) появляется модулированная ортогональная составляющая Р, пропускаемая зеркалом-поляризатором проектора на экран. При дальнейшем увеличении управляющего напряжения эта составляющая светового потока достигает максимума.
У отражающих ЖК-модуляторов, кроме меньших тепловых потерь, есть и другие преимущества. Здесь матрица управляющих полевых транзисторов не занимает пространства в жидкокристаллическом слое, а расположена за ним на подложке с электроникой. За счет этого достигается увеличение разрешения и поверхности зеркальных электродов. В результате удается одновременно увеличить и яркость изображения. Вместе с тем, их управляющая характеристика нелинейная, что должно компенсироваться коррекцией амплитудной характеристики канала изображения проектора.
Пока высшим достижением технологии D-ILA является проектор JVC DLA-QX1 с разрешением 2048x1536. Будем надеяться, что скоро появится новинка JVC QHDTV с разрешением 4К, параметры которой были анонсированы на выставке lnfoComm"2006 и повторены на lnfoComm"2007.

Видеопроекторы технологии LCOS (Liquid Crystal on Silicon). Оптическая схема этих проекторов аналогична D-ILA и приведена на рис. 6. Здесь световой поток источника света 1, пройдя защитный ИК-фильтр 2 и конвертер поляризации 3, сначала разделяется цветоделительным узлом 4 на R+G (желтую) и В (синюю) составляющие.

Рис. 6. Оптическая схема проектора LCOS
Далее эти составляющие, отражаясь от соответствующих зеркал 5 и пройдя корректирующие светофильтры 7, попадают на PBS-блоки 8. При этом составляющая R+G предварительно разделяется дихроичным зеркалом 6 на красную (R) и зеленую (G) компоненты. Фильтрованные компоненты R, G и В поступают на соответствующие модуляторы 9 и, отражаясь от них, снова в блоки 8 и затем в смесительную призму 10. Здесь они суммируются и, отражаясь от зеркала 5, попадают в объектив 10.
К высшим достижениям жидкокристаллической технологии относятся проекторы Sony SRXR105 и SRXR110 технологии SXRD (Silicon X-tal Reflective Display) с разрешением 4К (4096x2160), временем отклика менее 5 мс и световыми потоками 5000 и 10000 лм соответственно. Они оснащены ксеноновыми лампами и отражающими модуляторами формата 1,85:1 с размерами пикселей и расстояний между ними 8,5 мкм и 0,35 мкм соответственно.
Кстати о времени отклика (Time Response). Часто, сравнивая LCD с кинескопными (CRT) телевизорами, говорят о низком быстродействии LCD как об основном их недостатке. При этом забывают о том, что быстродействие CRT-телевизоров не лучше, а хуже чем у современных LCD. Хорошо известно, что яркость изображения и отсутствие заметного мерцания на экране CRT-телевизоров обеспечивается благодаря послесвечению люминофоров его покрытия, которое принципиально должно быть около 20 мс.
ЖК-проекторы с модуляцией отражаемого светового потока также тестировались в лаборатории S&V. В частности, модели Sony VPL-VW100 (награда EISA 2006-2007 "Лучший видеопроектор класса High End", см. № 9"06) и JVC DLA-HD1 продемонстрировали явное преимущество в контрастности изображения по сравнению с видеопроекторами других технологий. Причем DLA-HD1 выиграл соревнование у проектора Sony VPL-VW50 технологии SXRD (см. №6"07).

Микрозеркальные проекторы (Digital Light Processing, DLP)
Технология DLP разработана фирмой Texas Instruments (TI), и серийные модели этих проекторов появились 10 лет назад. Самые яркие из них содержат три DMD-чипа и выполнялись по оптической схеме, показанной на рис. 7.
Здесь световой поток, создаваемый источником света, пройдя систему с конденсором, тепловым фильтром, зеркалами и призмой полного внутреннего отражения, поступает на комбинированную цветоделительную призму, выделяющую из него составляющие первичных цветов и направляющую их на поверхности DMD соответствующих каналов. Эти составляющие модулируются чипами, отражаются и объединяются комбинированной призмой в общий световой поток, поступающий в проекционный объектив.
Чип DMD представляет собой световой модулятор, состоящий из матрицы поворотных алюминиевых зеркал размером 16x16 мкм, количество которых соответствует оптическому разрешению проектора. Зеркала крепятся на подложке с помощью механических подпружиненных подвесов, позволяющих им поворачиваться в пределах ±10 градусов (±12° у современных моделей), как показано на рис. 8. В зависимости от управляющих напряжений каждое зеркало может занимать крайние положения "включено" или "выключено". В первом случае отраженный зеркалом свет попадает в оптическую систему объектива, а во втором поглощается. Время переключения состояний зеркал не превышает 2 мкс, и их положение управляется широтно-импульсной модуляцией с частотой полей. Уровень цветовых составляющих светового потока определяется относительным временем нахождения зеркал во включенном положении на интервале каждого телевизионного поля, длительность которого подвергается 10-разрядной дискретизации. Воспринимаемая подсознанием цветность определяется способностью зрения усреднять мгновенные яркости и цветовые оттенки всех пикселей экранного изображения. Для того, чтобы это получалось лучше, применяется увеличение частоты коммутации пикселей путем преобразования длинных импульсов в совокупность более коротких той же продолжительности.
Трехчиповые DLP-проекторы доминируют на рынке оборудования для цифровых кинотеатров. Почти все они имеют разрешение 2К, а световой поток самых ярких из них составляет 30000 лм. Три года назад появился трехчиповый проектор InFocus ScreenPlay 777 (2000 лм, 1280x720), предназначенный для домашнего кинотеатра. Заметного распространения на мировом рынке такие проекторы не получили, поскольку ЖК- и одночиповые DLP-проекторы с разрешением 1920x1080 оказались гораздо дешевле.

Микрозеркальные проекторы с одним DMD. Нагрузка на зрение возрастает при просмотре изображений от DLP-проекторов с одним DMD-чипом. Здесь глазам приходится делать, кроме высокочастотного усреднения яркости, низкочастотное усреднение цветности, так как изображение на всем экране появляется последовательно в первичных цветах. Почти все одночиповые DLP-проекторы оснащаются вращающимся светофильтром (ColorWheel), который в первых моделях содержал 3 цветных сектора и вращался с частотой 60 Гц, т.е. 3600 об./мин Модели с такими светофильтрами называются DLP-проекторами с однократной скоростью фильтра. При этом частота мелькания цветов составляет 180 Гц, что оказалось недостаточным для исключения зрительных артефактов и усталости зрения, возникающей при длительных просмотрах мелькающих изображений.
Хорошо известный зрительный артефакт одночиповых DLP-проекторов получил название эффекта "радуги". Этот эффект проявляется в том, что зритель с хорошей быстротой зрения иногда видит вместо однотонно окрашенных фрагментов изображения чередующиеся вспышки основных цветов на них. Обычно такие вспышки становятся заметными в процессе перевода зрения на фрагменты изображения, расположенные на большом расстоянии друг от друга. В современных DLP-проекторах с одним DMD частота вращения фильтра увеличена, и его стали выполнять с шестицветными секторами, что уменьшило Заметность мельканий и эффекта "радуги". Недавно фирмой TI разработан ColorWheel с шестью секторами, чередующимися в основных и дополнительных цветах, и технология BrilliantColor, обеспечивающая формирование высококачественных видеосигналов для DLP-проекторов с такими светофильтрами.
Оптическая схема DLP-проектора с трехсекторным ColorWheel показана на рис. 9а. Ее особенностью является фирменный светотехнический узел Oerlikon LightTunnel™, обеспечивающий при малых габаритах высокую пылезащищенность и минимальные потери света за счет применения высокоэффективных внутренних покрытий Silflex™ и Deflex™.
Несколько другая оптическая схема, показанная на рис. 9б, применяется в проекционных дисплеях и телевизорах (RPTV) с просветными экранами. Такая продукция благодаря меньшей цене и простоте обслуживания тем успешнее конкурирует с большеэкранными LCD- и PDP-дисплеями, чем меньше толщина конструкции. Поэтому у них используются короткофокусные объективы, специальные просветные экраны и другие ухищрения, уменьшающие габариты оптической системы по толщине, например, призма полного внутреннего отражения Oerlikon LightGate™ 7б (рис. 9б).
Первой 60-дюймовый тонкий DLP-дисплей (толщина 26 см, разрешение 1024x768) стала выпускать японская корпорация Mitsibishi четыре года назад (модель DDP60). За ней последовала американская фирма InFocus, которой удалось уменьшить толщину широкоформатных RPTV с разрешением 1280x720 до 17,4 см! Фирмы JVC и Sony недавно начали выпускать 70-дюймовые жидкокристаллические RPTV с разрешением 1920x1080 технологий D-ILA и SXRD соответственно.

Рис. 10. Схема проектора ProjectionDesign Action! Model Three 1080
Разновидностями DLP-проекторов с одним DMD-модулятором являются модели со светофильтром ColorWheel, содержащим дополнительный, прозрачный сектор. Очевидно, применение фильтра ColorWheel с прозрачным сектором увеличивает световой поток проектора, но за счет уменьшения цветовой насыщенности изображения. Заметим, что работы по совершенствованию конструкции продолжаются. В частности, предлагаются новые разновидности светофильтра ColorWheel и все более совершенные оптические системы в целом. Например, новинкой, реализованной в проекторе Action! Model Three 1080 норвежской фирмы ProjectionDesign, является показанная на рис. 10 схема с двумя дуговыми лампами, светофильтрами ColorWheel и сдвоенным LightTunnel.
Одночиповые DLP-проекторы в целом не менее успешно показывают себя на тестированиях, чем жидкокристаллические. Приз симпатий редакции получили лучший видеопроектор EISA 2006-2007 InFocus IN76 и модель BenQ РЕ7700 (см. №9"06 и №11 "06). Кроме того, на равных с ЖК-проекторами HDTV выступила модель SIM2 НТ3000 (см. № 12"06).

Видеопроекторы с полупроводниковыми источниками света
Какие бы технологии модуляции светового потока ни изобретались, очевидно, главную роль в проекционной аппаратуре играет источник света. Так как сегодня почти исчерпаны ресурсы повышения эффективности дуговых ламп, все больше внимания уделяется альтернативным источникам света. К ним относятся мощные светодиоды (Light Emitting Diode, LED) и лазеры, которые превосходят дуговые лампы по ресурсу и спектральной стабильности светового потока.

Отличие полупроводникового лазера от светодиода

Принципиальным отличием полупроводникового лазера от светодиода является наличие в p-n-структуре лазера оптического резонатора, зазор между образующими зеркалами которого равен длине волны излучения X, причем выходное зеркало резонатора полупрозрачно. В светодиодах носители заряда p и n рекомбинируют самопроизвольно (спонтанно), и возникающее при этом излучение занимает довольно широкую полосу частот. Лазерное излучение имеет вынужденный характер и возникает при очень большой плотности тока накачки (смещения p-n-структуры в проводящем направлении), исключающей спонтанную рекомбинацию носителей. При этом квант света, пролетая от одного зеркала к другому и обратно, вынуждает излучение таких же вторичных квантов, т.е. происходит усиление света. Кванты спонтанного излучения испускаются в случайных направлениях, а квант вынужденного излучения испускается в том же направлении, что и квант, вызвавший это излучение, то есть оба кванта тождественны. В идеале лазер должен создавать монохроматическое излучение, но на практике этого добиться довольно трудно.


Светодиодная проекция. Светодиоды особо интересны для разработчиков DLP-проекторов, так как позволяют создавать модели с одним DMD без светофильтра ColorWheel. Первый светодиодный DLP-проектор появился в 2005 г.
Рис. 11. Проектор Mitsubishi РК20
Это была модель Mitsubishi РК10, открывшая категорию Pocket самых маленьких проекторов, способных обслуживать экран диагональю до 60 дюймов. Источниками света у РК10 служили три мощных светодиода серии LumiLEDS® с ресурсом 10000 часов и последовательным чередованием цветов. В дальнейшем появились аналогичные проекторы других производителей, например, Box-light, Samsung и Toshiba. На выставке CES"2007 фирмой Mitsubishi был продемонстрирован модифицированный PocketProjector РК20 (рис. 11, световой поток 25 лм, разрешение 800x600, размеры 123x97x48 мм, масса 500 г). В качестве источников света у РК20 использована сборка из 8 светодиодов. Панель разъемов проектора допускает подключение любых источников информации, в том числе карты памяти SD. Предусмотрена комплектация проектора внешним аккумулятором, способным поддерживать работу проектора в течение 2 часов. Потребляемая светодиодами мощность составляет 23 Вт, а проектором в целом - 37 Вт.
Оптическая схема светодиодного DLP-проектора приведена на рис. 12. Здесь роль источников света выполняют светодиоды 1 с рефлекторами 2, последовательно излучающие световые потоки первичных цветов R, G и В. Совмещение оптических осей излучений светодиодов обеспечивается юстировкой двух дихроичных зеркал 3. Далее, отражаясь от зеркала 4, эти потоки через оптический конденсор 5 последовательно попадают на DMD-модулятор 6, после чего объективом 7 проецируются на экран. Принципиально эта схема выглядит более эффективной, чем у DLP-проекторов (рис. 9). Действительно, здесь нет фильтра ColorWheel и меньше других оптических компонентов с неизбежными световыми потерями. Кроме того, ColorWheel с любым секторным делением в светодиодных проекторах можно легко реализовать введением программного чередования цветов и даже сделать такие программы выбираемыми пользователем по критерию минимальной утомляемости при просмотре.
Рис. 13. ЖК-проектор Sony
В прошлом году компания Sony продемонстрировала самый миниатюрный на тот момент светодиодный ЖК-проектор (рис. 13). Его световой поток 50 лм создается блоком излучателей, содержащим 14 светодиодов (4 красных, 4 синих и 6 зеленых) мощностью 20 Вт при общем энергопотреблении проектора 30 Вт. Получается, что реальная световая отдача светодиодного проектора примерно 2,5 лм/Вт, что как минимум на порядок меньше световой отдачи светодиодов и существенно меньше, чем у лучших проекторов с дуговыми лампами (порядка 10 лм/Вт). Впрочем, Pocket-проекторы находятся на начальной стадии их развития. Можно ожидать, что этот показатель скоро будет улучшен совершенствованием оптики блока излучателей, которая должна собирать и направлять в оптическую систему проектора по возможности весь световой поток, создаваемый светодиодами.

Лазерная проекция. Использование полупроводниковых лазеров для проекции изображений в настоящее время считается одним из самых перспективных. В их пользу говорит более широкая гамма отображаемых цветов и длительный (десятки тысяч часов) срок службы с неизменной световой отдачей. Кроме того, изучаемый лазерами свет имеет круговую поляризацию, которая просто и с высоким КПД может быть преобразована в линейную, что позволяет исключить из ЖК-проекторов конвертеры поляризации и упростить конструкцию в целом.
Оптическая схема лазерного DLP-RPTV и дисплея приведена на рис. 14. Здесь в качестве источников света 1 используются полупроводниковые лазеры типа Oerlikon OLM™ 3000 красного (615,25 нм), зеленого (532,5 нм) и синего (465 нм) цветов с излучаемой мощностью по 3 Вт. Эти излучения поступают на дифракционные формирователи 2 (Diffractive Beam Shapers, DBS), обеспечивающие равномерность излучений по их сечениям. Далее они отражаются и совмещаются дихроичными зеркалами 3 и, отражаясь от зеркала 4, преобразуются оптическим компонентом 5 в широкий пучок лучей, соответствующий апертуре DMD-модулятора 6, а модулированный им свет отражается и проецируется объективом 7 на просветный экран дисплея.
Известно, что глаз человека обладает максимальной спектральной чувствительностью для зеленого света, и что 1 Вт мощности однородного энергетического потока с длиной волны зеленого излучения 555 нм в Международной системе единиц СИ эквивалентен световому потоку 683 лм. Расчеты показывают, что равно-энергетическое излучение белого света мощностью 1 Вт с учетом спектральной чувствительности зрения к основным цветам RGB, принятым Международной комиссией по освещению (МКО), соответствует световому потоку 250 лм. Следовательно, световой поток, излучаемый диодами 1 (рис. 14) мощностью по 3 Вт, соответствует 750 лм, что достаточно для получения яркости 250 кд/м2 40-дюймового просветного экрана, но без учета потерь энергии на оптических компонентах 2-7 схемы и самом экране (данные по их КПД не публикуются).
Американская компания Novalux разработала технологию производства мощных лазерных источников света оптического диапазона NECSEL (Novalux Extended Cavity Surface Emitting Laser), построенных на принципе удвоения на нелинейных кристаллах частоты излучения мощного инфракрасного лазера. Утверждается, что ресурс работы излучателей превышает 50 тыс. часов без снижения выходной мощности и изменения длины волны излучения в видимом диапазоне, а прогнозируемая цена трехцветного лазерного излучателя при производстве 1 млн штук в год - менее 100 долларов. Красный, зеленый и синий цвета могут быть реализованы в едином блоке излучателей (рис. 16).

Рис. 15. Лазер OLM 3000
Первый образец лазерного телевизора был изготовлен австралийской фирмой Arasor, занимающейся оптоэлектроникой, путем доработки 52-дюймового RPTV Mitsubishi, содержащего одночиповый DLP-проектор. Доработка свелась к введению в проектор лазерного источника света Novalux и использованию в телевизоре оптических компонентов Arasor. В октябре прошлого года модифицированный телевизор был продемонстрирован вместе с PDP-аналогом, показав явные преимущества по яркости изображения и чистоте цветов. Первый лазерный DLP-телевизор без светофильтра СоlorWheel на излучателях NECSEL продемонстрировала компания Mitsubishi Electric на выставке CES"2007. По утверждению фирмы, этот 52-дюймовый RPTV обеспечивает яркость 500 кд/м2, контрастность 4000:1 и имеет лучший показатель цена/качество, чем плазменные дисплеи. На той же выставке Sony продемонстрировала прототип лазерного HD-телевизора (55", 1920x1080, толщина 27 см). На выставке lnfoComm"2007 Mitsubishi анонсировала 62-дюймовый HD-телевизор с толщиной, сравнимой с толщиной плазменных дисплеев, и прогнозируемой ценой $3000. Словом, процесс пошел...
Отметим также, что идея применения микропроекторов на лазерах уже поддержана производителями аппаратуры PDA (Personal Digital Assistant) и сотовых телефонов. Уже появились лазерные пикопроекционные DLP-модули для встраивания в такую продукцию, например, фирм Texas Instruments и Motorola.
Началась эта революция с появления на выставке CES"2007 интересной разработки израильской фирмы ExPlay под названием Nano-Projector. Его особенностью является использование гибридного источника света, содержащего лазерные и светодиоды. Далее световой поток через дифракционные формирователи DBS, обеспечивающие равномерность излучения, поступает на корректирующий оптический компонент Despeckling Devise, устраняющий Заметность так называемых "спеклов" - гранулированной структуры изображения, создаваемого интерферирующими когерентными пучками лазерных излучений.
Рис. 16. Схема DLP-проектора по версии Novalux
Сформированный таким образом равномерный световой поток белого света проходит цветной, просветный ЖК-модулятор ASML (Advanced Spatial Light Modulator) с максимальным светопропусканием 60% и проецируется объективом (Lens). Дистанция наводки на резкость фиксирована и равна гиперфокальному расстоянию этого объектива, что без дополнительной фокусировки обеспечивает резкость проецируемого изображения, размеры которого по диагонали могут быть от 7 до 30 дюймов (зависит от проекционного расстояния). Совместимость нанопроектора с различными системами представления отображаемой информации обеспечивается специализированным микропроцессором Mixed Signal ASIC (Application Specific Integrated Circuit) с 40-контактным интерфейсом. Еще одним достоинством разработки ExPlay является применение жидкокристаллического модулятора, формирующего абсолютно безвредное для зрения изображение при модуляции источника света, спектр которого близок к солнечному. В данном случае это не совсем так из-за наличия в спектре лазерной составляющей (и совсем не так у лазерных DLP-проекторов, особенно с одним DMD).

Проблемы и перспективы.
Лазерные дисплеи почти по всем показателям превосходят аналогичную продукцию с источниками света других типов. Это следует из уже достигнутых результатов и из таблицы (

Проекционный аппарат/ проектор (от латинского projicio — бросаю вперед) — оптекомеханический прибор для проецирования на экран увеличенных изображений различных объектов.

Первый проектор изобрел немецкий физик и математик Афанасий Кирхер в 1640г., назвав свой аппарат «волшебный фонарь». Аппарат, в котором источником света служила свеча, позволял создавать на экране теневые проекции изображения людей, животных или предметов, вырезанных из картона.

Современные проекционные аппараты проецируют на экран изображения с экрана монитора и подключаются к ПК. В компьютерных проекторах в качестве источника проецируемого изображения используется специальный электронно-управляемый модулятор, на который подается сигнал от видеоадаптера ПК. Модулятор используется в качестве управляемого светофильтра, модулирующего световой поток от проекционной лампы.

Конструкции и принципы действия модуляторов отличаются большим разнообразием, хотя в основном они построены на базе ЖК-панелей.

В мультимедийном проекторе проекционная лампа, ЖК- матрица и оптическая система конструктивно размещаются в одном корпусе, что делает их похожими на диапроекторы, предназна­ченные для просмотра слайдов или диафильмов.

По принципу действия мультимедийный проектор не отличается от оверхед-проектора: изображение создается с помощью мощной проекци­онной лампы и встроенного в проектор электронно-оптического модулятора, управляемого сигналом видеоадаптера ПК, а затем посредством оптической системы проецируется на внешний эк­ран. Основным отличием в мультимедийных проекторах является конструкция модулятора и способы построения и переноса изоб­ражения на экран.

В зависимости от конструкции модулятора про­екторы бывают следующих типов:

  • TFT-проекторы;
  • полисилико­новые проекторы
  • DMD/DLP-проекторы.

В зависимости от способа освещения модулятора мультимедий­ные проекторы подразделяют на проекторы просветного и отражательного типов .

TFT-проекторы

В TFT -проекторах , относящихся к проекторам просветного типа, в качестве модулятора используется малогабаритная цветная ак­тивная ЖК – матрица, выполненная по технологии TFT. Принцип действия мультимедийного TFT-проектора просветного типа ил­люстрирует рис. 1.

Основным элементом установки является миниатюрная ЖК- матрица , выполненная по технологии TFT, как и ЖК-экран плос­копанельного цветного монитора . Равномерное освещение поверх­ности ЖК-матрицы достигается за счет применения системы линз, называемой конденсором.

Полисилико­новые проекторы

Полисиликоновые мультимедийные проекторы также относятся к проекторам просветного типа и применяются в том случае, когда необходимо получить более яркое изображение. В них используется не одна цветная TFT-матрица, а три монохромных миниатюр­ных ЖК-матрицы размером около 1,3″ . Каждая из матриц форми­рует монохромное изображение красного, зеленого или синего цвета. Оптическая система проектора, как показано на рис. 2, обеспечивает совмещение трех монохромных изображений, в результате чего формируется цветное изображение. Такая техноло­гия получила название полисиликоновой (p Si ) . Каждый элемент полисиликоновой матрицы содержит только один тон­копленочный транзистор, поэтому его размер меньше, чем раз­мер элемента TFT-матрицы, что позволяет повысить четкость изображения .

Цветоделителъная система полисиликонового проектора , со­стоящая из двух дихроичных (D 1 D 2 ) и одного обычного (N 1) зеркал (рис.2), используется для разложения белого света проекционной лампы на три составляющие основных цветов (красный, зеленый, синий).

Цветоделение необходимо выполнить для того, чтобы подать на каждую из трех монохромных матриц световой поток соот­ветствующего цвета. Дихроичное (цветоделительное) зеркало пропус­кает свет только одной длины волны (один цвет) и представляет собой хорошо отполированную стеклянную подложку с нанесен­ной на него тонкой пленкой из диэлектрического материала.

Система цветосмешения полисиликонового проектора состоит из двух дихроичных (D 3 D 4 ) и одного отражающего (N 2 ) зеркал и служит для получения цветного изображения путем наложения одного на другой трех монохромных изображений, создаваемых соответствующими ЖК -матрицами.

Полисиликоновые проекторы обеспечивают более высокое качество изображения, яркость и насыщенность цветов по сравнению с проекторами на основе TFT-матриц . Они более надежны в работе и долговечны , поскольку три ЖК-матрицы работают в менее напряженном тепловом режиме, чем одна. Благодаря этому поли­силиконовые проекторы можно использовать при проецировании изображения на большой экран в таких помещениях, как конфе­ренц-залы, кинотеатры.

DMD/DLP-проекторы

ЖК-проекторы отражательного типа предназначены для рабо­ты в больших аудиториях и отличаются по принципу действия: модуляции подвергается не проходящий, а отраженный световой поток.

В настоящее время наиболее используемой в конструкциях ЖК-проекторов отражательного типа является технология DMD/DLP , разработанная фирмой Texas Instruments .

В DMD / DLP -проекторах отражательного типа излучение ис­точника света модулируется изображением при отражении от мат­рицы.

В DMD/DLP-проекторах в качестве отражающей поверхно­сти используется матрица, состоящая из множества электронно — управляемых микрозеркал, размер каждого из которых около 1 мкм . Каждое микрозеркало имеет возможность отражать падаюший й него свет либо в объектив, либо в поглотитель, что определяется уровнем поданного на него электрического сигнала. При попадании света в объектив образуется яркий пиксел экрана, а в поглотитель — темный. Такие матрицы обозначаются аббревиатурой DMD(Digital Micromirror Device- цифровой микрозеркальный прибор) , а технология, на которой основан их принцип действия, - DLP (Digital Light Processing - цифровая обработка света).

Как правило, в одной DMD-матрице содержится около 848 х 600 = 508 800 микрозеркал, что превосходит SVGA-разрешение (800×600 = 480 000 пикселов).

Для получения цветного изображения используются проекто­ры двух вариантов: с тремя или одной DMD-матрицей.

Трехматричный проектор , схема которого дана на рис. 3, по способу формирования цветного изображения аналогичен полисиликоно­вому (см. рис. 2).

В одноматричных DMD/DLP-проекторах полный цветной кадр формируется в результате последовательного наложения трех бы­стро меняющихся монохромных кадров: черно-красного, черно-зеленого и черно-синего. Смена монохромных кадров на экране незаметна благодаря инерционности человеческого зрения. Мо­нохромные кадры образуются при последовательном освещении DMD-матрицы лучом красного, зеленого и синего цветов. Луч каждого цвета образуется за счет пропускания светового потока г проекционной лампы через вращающийся диск с красным, зеленым и синим светофильтрами, как это показано на схеме одноматричного проектора (рис. 4). Управление микрозеркалами синхронизировано с поворотом светофильтра.

Схема одноматричного отражательного мультимедийного проектора

По сравнению с ЖК-технологиями технология DLP обладает следующими преимуществами:

  • практически полным отсутствием зернистости изображения,
  • высокой яркостью и равномерностью ее распределения.

К недостаткам одноматричных DMD-проекторов следует отнести заметное мелькание кадров.

1.Мультимедийные проекторы.

Среди разработанных на сегодняшний день технологий проецирования цветного изображения на внешний экран можно выделить четыре основные, получившие наиболее широкое применение в коммерческих продуктах ведущих производителей и различающиеся в первую очередь типом элемента, используемого для формирования изображения:

CRT - Cathode Ray Tube;

LCD - Liquid Crystal Display;

DLP - (Digital Light Processing);

D-ILA - Direct Drive Image Light Amplifier.

В каждом случае свойства формирователя определяют основные достоинства и недостатки технологии, а, следовательно, и область применения созданных на ее основе проекционных аппаратов.

CRT-технология

Мультимедийные проекторы на базе электронно-лучевых трубок (CRT) выпускаются в течение уже нескольких десятилетий. Но, несмотря на появление более современных технологий, по качеству воспроизведения изображения (разрешение, четкость, точность цветопередачи), уровню акустического шума (менее 20 дБ) и длительности непрерывной работы (10 000 часов и более) они до сих пор не имеют себе равных. Ни одна другая технология пока не обеспечивает столь же глубокий уровень черного и столь же широкий динамический диапазон яркости изображения, благодаря которым CRT-проекторы позволяют различать детали даже при демонстрации затемненных сцен. Физические характеристики флюоресцирующего покрытия экрана трубки исключают потерю информации при воспроизведении видеосигналов разных стандартов (NTSC, PAL, HDTV, SVGA, XGA и т. д.), а сходство технологии производства используемых в проекторах трубок с телевизионными обеспечивает точность передачи цветов без применения алгоритмов гамма-коррекции.

Обладая несомненными достоинствами, особенно при демонстрации видео, CRT-проекторы имеют и ряд существенных недостатков, ограничивающих сферу их применения. При значительных габаритах и массе в несколько десятков килограмм они проигрывают современным портативным мультимедиа-проекторам в яркости. При характерном для них световом потоке в пределах от 100 до 300 ANSI-лм просмотр программ возможен лишь в отсутствие внешнего освещения. Для достижения наилучшего качества изображения при инсталляции CRT-проектора нужно выполнить множество тонких настроек (сведение лучей, баланс белого и т. д.), что требует привлечения квалифицированного персонала. Таким образом, к достаточно высокой цене самого устройства могут добавиться значительные эксплуатационные расходы.

LCD-технология

В мультимедийных проекторах, выполненных по технологии LCD (Liquid Crystal Display), функции формирователя изображения выполняет LCD-матрица просветного типа. По принципу действия такие аппараты напоминают обычные диапроекторы с той разницей, что проецируемое на внешний экран изображение формируется при прохождении излучаемого лампой светового потока не через слайд, а через жидкокристаллическую панель, состоящую из множества электрически управляемых элементов - пикселов.

LCD-технология позволила существенно удешевить проекционные аппараты, уменьшить их габариты и одновременно увеличить излучаемый ими световой поток (в наиболее мощных моделях он достигает и 10000 ANSI-лм). Она естественным образом адаптирована к воспроизведению видеосигналов от компьютерных источников, а также сохраненных в цифровом формате видеофайлов. LCD-проекторы просты в обращении и настройке и сохраняют свои параметры после транспортировки. Именно поэтому они широко применяются в бизнес-сфере для проведения презентаций и демонстрации шоу-программ.

Вместе с тем, из-за ограниченности собственного оптического разрешения, определяемого числом пикселов в жидкокристаллической матрице формирователя изображения, LCD-проекторы воспроизводят без искажения сигналы только одного, как правило, компьютерного стандарта SVGA, XGA и т. д. Для воспроизведения сигналов иных стандартов, в том числе телевизионных, применяются специальные алгоритмы преобразования графической информации к естественному для данного проектора цифровому формату. Наличие непрозрачных промежутков между отдельными пикселами в жидкокристаллических матрицах приводит к появлению на экране сетки, различимой с близкого расстояния. С переходом на полисиликоновые матрицы с более плотной структурой пикселов и разрешением XGA и выше этот недостаток становится практически незаметным, а постоянное совершенствование алгоритмов формирования цветного изображения значительно улучшает его качество по сравнению с моделями более ранней разработки.

DLP-технология

Лежащая в основе любого DLP-проектора технология цифровой обработки света (DLP) базируется на разработках корпорации Texas Instruments, создавшей новый тип формирователя изображения - цифровое микрозеркальное устройство DMD (Digital Micromirror Device). DMD-формирователь представляет собой кремниевую пластину, на поверхности которой размещены сотни тысяч управляемых микрозеркал. Главное его преимущество по сравнению с формирователями иного типа заключается в высокой световой эффективности, обусловленной двумя факторами: более эффективным использованием рабочей поверхности формирователя (коэффициент использования - до 90%) и меньшим поглощением световой энергии работающими "на отражение" микрозеркалами, которые к тому же не требуют применения поляризаторов. В силу этих причин, а также относительно простого решения проблемы отвода тепла, DLP-технология позволяет создавать как мощные проекционные аппараты с большим световым потоком (в настоящее время достигнут уровень 18000 ANSI-лм), так и сверхминиатюрные проекторы (ультрапортативные, микропортативные) для мобильных пользователей. Именно в этих классах продуктов DLP-технология сегодня доминирует.

Современные DLP-проекторы строятся по схеме с одним, двумя и тремя DMD-кристаллами (см. Устройство DLP-проектора). Как и LCD-аппараты, они характеризуются собственным оптическим разрешением, определяемым числом микрозеркал в DMD-матрице, и наилучшим образом приспособлены для воспроизведения графической и видеоинформации, хранящейся в цифровом формате (компьютерные файлы, записи на DVD-дисках).

Используемый в них принцип формирования полутонов (а также полноцветного изображения в устройствах с одной DMD-матрицей) основывается на свойстве человеческого глаза усреднять визуальную информацию за короткий промежуток времени и требует применения сложных алгоритмов пересчета входных данных в управляющие микрозеркалами ШИМ-последовательности (сигналы с широтно-импульсной модуляцией). Качество алгоритмов во многом определяет достигаемую точность цветопередачи.

Устройство проекторов и строение матриц.

Устройство CRT-проектора

Наиболее совершенные CRT-проекторы строятся на трех электронно-лучевых трубках с размером экрана от 7 до 9 дюймов по диагонали. Каждая трубка воспроизводит один из базовых цветов пространства RGB - красный, зеленый или синий. CRT-технология

Выделенные из входного сигнала цветовые составляющие управляют работой модуляторов соответствующих трубок, меняя интенсивность электронного луча, который под воздействием магнитного поля отклоняющей системы сканирует внутреннюю поверхность экрана трубки с фосфорным покрытием. Таким образом на экране трубки формируется изображение одного цвета. С помощью линзы оно проецируется на внешний экран, где смешивается с проекциями от двух других трубок для получения полноцветной картинки.

Устройство LCD-проектора

Современные LCD-проекторы выполняются на базе трех полисиликоновых жидкокристаллических матриц, размером, в основном, от 0.7 до 1.8 дюймов по диагонали. Структурная схема такого проектора представлена на рисунке.

Световое излучение лампы с помощью конденсора преобразуется в равномерный световой поток, из которого дихроичные зеркала-фильтры выделяют три цветовые составляющие (красную, синюю и зеленую) и направляют их на соответствующие LCD-матрицы. Сформированные ими цветные изображения объединяются в цветосмесительном призматическом блоке в одно полноцветное, которое затем через объектив проецируется на внешний экран.

DMD (Digital Micromirror Device)

DLP-технология

DMD-кристалл, по сути, представляет собой полупроводниковую микросхему статической оперативной памяти (SRAM), каждая ячейка которой, а точнее ее содержимое, определяет положение одного из множества (от нескольких сотен тысяч до миллиона и более) размещенных на поверхности подложки микрозеркал с размерами 16х16 мк. Как и управляющая ячейка памяти, микрозеркало имеет два состояния, отличающиеся направлением поворота зеркальной плоскости вокруг оси, проходящей по диагонали зеркала. (В каждом состоянии угол между плоскостью зеркала и поверхностью микросхемы составляет 10°.)

Таким образом, принципиальной особенностью любого DMD-кристалла является наличие в его структуре подвижных механических элементов.

В DLP-проекторах DMD-кристалл выполняет функции формирователя изображения. В зависимости от положения микрозеркала отраженный им световой поток направляется либо в объектив (на экране формируется светлое пятно), либо в светопоглотитель (соответствующий участок экрана остается затемненным).

Принцип формирования изображения с помощью DMD-матрицы

Для воспроизведения полутонов применяется метод широтно-импульсной модуляции (ШИМ) сигналов, управляющих переключением зеркал. Чем больше времени в течение усредняемого глазом интервала в 1/60 секунды микрозеркало проводит в состоянии?включено│, тем ярче пиксел на экране.

DLP-технология

Современные DLP-проекторы строятся по схеме с одним, двумя и тремя DMD-матрицами.

Оптическая схема одноматричного DLP-проектора

В одноматричном DLP-проекторе световой поток лампы пропускается через вращающийся фильтр с тремя секторами, окрашенными в цвета составляющих пространства RGB (в современных моделях к трем цветным секторам добавлен четвертый - прозрачный, что позволяет увеличить световой поток мультимедийного проектора при демонстрации изображений с преобладающим светлым фоном). В зависимости от угла поворота фильтра (а, следовательно, и цвета падающего светового потока) DMD-кристалл формирует на экране синюю, красную или зеленую картинки, которые последовательно сменяют одна другую за короткий интервал времени. Усредняя отражаемый экраном световой поток, человеческий глаз воспринимает изображение как полноцветное.

По схеме с одним DMD-кристаллом в настоящее время строятся наиболее миниатюрные DLP-проекторы. Они применяются для проведения мобильных бизнес-презентаций, а также для демонстрации цветного видео. Следует, однако, учитывать, что в последнем случае световой поток проектора с четырехсекторным цветным фильтром оказывается ниже указанного в техническом паспорте, т. к. в этом режиме прозрачный сектор не работает, и эффективность использования светового потока лампы снижается.

Оптическая схема двухматричного DLP-проектора

Вдвухматричных DLP-проекторах вращающийся цветной фильтр имеет два сектора пурпурного (смесь красного с синим) и желтого (смесь красного и зеленого) цветов. Дихроичные призмы разделяют световой поток на составляющие, при этом поток красного цвета в каждом случае направляется на одну из DMD-матриц. На вторую в зависимости от положения фильтра направляется поток либо синего, либо зеленого цвета. Таким образом, двухматричные проекторы, в отличие от одноматричных, проецируют на экран картинку красного цвета постоянно, что позволяет компенсировать недостаточную интенсивность красной части спектра излучения некоторых ламп.

Оптическая схема трехматричного DLP-проектора

В трехматричных DLP-проекторах световой поток лампы с помощью дихроичных призм расщепляется на три составляющих (RGB), каждая из которых направляется на свою DMD-матрицу, формирующую картинку одного цвета. Объектив аппарата проецирует на экран одновременно три цветных картинки, формируя таким образом полноцветное изображение.

Благодаря высокой эффективности использования светового излучения лампы, трехматричные DLP-проекторы, как правило, характеризуются повышенным световым потоком, достигающим у наиболее мощных аппаратов 18000 ANSI-лм.

Устройство D-ILA-проекторов

В D-ILA-проекторах функции формирователей изображения выполняют жидкокристаллические матрицы отражающего типа, характеризующиеся высоким разрешением и световой отдачей.

Структура матрицы D-ILA

D-ILA-технология

Матрица D-ILA представляет собой многослойную структуру, размещенную на подложке из монокристаллического кремния. Все компоненты схемы управления выполнены по комплиментарной технологии CMOS и располагаются за светомодулирующим слоем жидких кристаллов. Это позволяет существенно увеличить плотность размещения пикселов, размеры которых могут составлять всего несколько микрон, и обеспечить высокую эффективность использования площади кристалла (достигнутый уровень - 93%). Преимуществом технологии является также возможность формирования светомодулирующего слоя и схемы управления в ходе единого технологического процесса.

Отражающие свойства матрицы определяются состоянием слоя жидких кристаллов, меняющегося под воздействием переменного электрического напряжения, которое формируется между отражающими пикселными электродами и общим для всех пикселей прозрачным электродом.

D-ILA-матрицы выдерживают существенное повышение температуры, что позволяет применять в проекторах, выполненных на их основе, мощные источники света.

D-ILA ® – официально зарегистрированный товарный знак компанииJVC, который означает, что в данном продукте применена оригинальная разработка на основе дисплея на жидких кристаллах, сетчатого поляризационного фильтра и ртутной лампы, а изображение и цветопередача данного продукта будут на высшем уровне. Жидкокристаллический дисплей произведен с использованием технологииLCOS (жидкие кристаллы на кремниевой основе), расстояние между которыми микроскопически мало, именно поэтому жидкокристаллическая матрица позволяет достигать максимального коэффициента апертуры, именно эта величина наиболее полно определяет одновременно светосилу и разрешающую способность. В продуктах, созданных по технологииD-ILA ® , присутствуют жидкокристаллические дисплеи для каждого из трех цветов палитрыRGB, то есть для красного, зеленого и синего цветов. Эти жидкокристаллические дисплеи имеют уникальный неорганический выравнивающий слой, обеспечивающий повышенную долговечность и оптимальную производительность при любых условиях эксплуатации. Это обусловливает превосходное разрешение, формирование полутонов, яркость изображения и великолепную цветопередачу, которые не ухудшаются с течением времени, позволяя наслаждать прекрасным качеством изображения.

Просмотр кинофильмов дома на большом экране – это весьма распространенное желание. Но его реализация для большинства мечтателей ощутимо дорога. Иначе они просто купили бы либо проектор, либо телевизор. Но тем, кто разбирается в устройстве электроприборов, вполне по силам самостоятельно изготовить проекционное устройство для домашнего кинотеатра. Об этом и пойдет речь далее.

Немного теории

Для начала посмотрим на схему правильного проектора. Очевидно, что сделать такое устройство сможет не каждый. Хотя бы потому, что потребуется несколько точных и качественных оптических деталей заводского изготовления:

  • объектив;
  • линзы.

От них будет зависеть равномерность распределения света на экране. В объектив свет должен входить под правильным углом. При незнании оптических характеристик объектива и линз все расстояния можно определить опытным путем.

Источником изображения в проекционном устройстве служит матрица на жидких кристаллах. Они работают на просвет. Причем каждый пиксель на экране проецируется с увеличением размеров. Поэтому исходное изображение должно быть максимально четким. Чем больше пикселей, тем лучше. Так называемое FULL HD – это 1920×1080 пикселей. От яркости проекционной лампы будет зависеть максимальный размер экрана, на котором можно смотреть фильмы с приемлемой яркостью и контрастом.

Простейший проектор

Если читатель является обладателем смартфона или планшета с ярким экраном и разрешением, близким к FULL HD, а также мечтает о просмотре фильмов на большом экране, он может попробовать сделать простейший аппарат из коробки, линзы и своего гаджета. Коробка-корпус должна быть в любом поперечном сечении больше гаджета, а линза по диаметру соизмерима с размерами его экрана. Но от ее фокусного расстояния будет зависеть расстояние до экрана. Идея проста:

  • в коробке вырезается отверстие под линзу;
  • внутрь помещается гаджет, который можно приблизить или отдалить от линзы.

Гаджет устанавливается в оправку, которую удобно перемещать в коробке. Для оправки вполне подходящей заготовкой может служить другая коробка с меньшими размерами. Отражение света от стенок коробок должно быть минимальным. Для этого лучше всего обклеить поверхности черной бархатной бумагой для аппликаций. Либо покрасить черной матовой краской. Вместо краски можно применить густой черный обувной крем. Лучше всего проложить между стенками коробок направляющие, особенно при использовании бархатной бумаги. Они предохранят покрашенные поверхности от протирания.

Вот и весь проектор. Детали его смотрим на изображениях ниже.



Окрашенная коробка-корпус
Линза прикладывается к корпусу и обводится карандашом.
По линии от карандаша острым ножом вырезается отверстие.
В отверстие вставляется линза, которая приклеивается по контуру

Помещаем каретку внутрь коробки-корпуса и пользуемся проектором

Результат, который мы видим на экране, сильно зависит от размеров изображения на нем. Если размер уменьшить, яркость и четкость кадра улучшатся. Качество изображения в этом простейшем проекционном устройстве на уровне «это лучше, чем ничего». Но причина этого очевидна – необходима более высокая яркость источника изображения и дополнительная оптика.

Качественный самодельный проектор

Далее расскажем, как сделать проектор своими руками, соблюдая все требования. Начинать надо с разборки гаджета. Он разбирается с сохранением своей работоспособности так, чтобы жидкокристаллическая матрица экрана была доступна для просвечивания посторонним источником света. Если вы не можете этого сделать, значит, сборка такого проектора не для вас.



Используемые детали:

  1. плата источника питания светодиода;
  2. светодиод 100 Вт (преимущество имеет источник света с минимальными размерами);
  3. плата источника питания вентиляторов;
  4. плата управления вентиляторами;
  5. промежуточная линза;
  6. выходной объектив;
  7. пульт управления гаджетом через Wi-Fi;
  8. две промежуточные линзы Френеля;
  9. жидкокристаллическая матрица от гаджета.


Светодиод, смонтированный на радиаторе



Демонстрация эффективности линзы Френеля.
Промежуточная линза размещается между светодиодом и линзой Френеля для того, чтобы уменьшить потери света




Устранение искажений проекции подвеской матрицы с линзами с отклонением по горизонтали и вертикали

И вот результат проделанной работы. Расстояние до экрана 4 метра, диагональ кадра на экране 100 дюймов. Все хорошо видно.



На основе проектора для слайдов

Но существует и более простой путь для создания проектора. Для этого можно использовать проектор для слайдов, которые проецируются с листа бумаги формата А4 (оверхед-проектор). Поскольку вся оптика уже есть в наличии, остается приложить к ней только источник изображения. Им может стать матрица монитора. Его придется разобрать с сохранением работоспособности. Поскольку после установки матрицы в проектор монитор, как обычно, подключается к компьютеру. Лучше всего использовать проектор, который просвечивает слайд, а не использует отраженный свет.

Что получается в результате такой гибридизации монитора с проектором, показано на изображениях ниже.



Вот и все, что надо сделать. Если, конечно, у вас есть такой проектор. Какая видимость в результате получается на экране, демонстрирует изображение ниже.




Размеры и качество кадра на экране получаются очень хорошими. Причем существуют проекторы для проецирования небольших слайдов, которые соизмеримы с экраном смартфона. Они дешевле. Поэтому можно купить смартфон с битым экраном и неисправный проектор для его матрицы. А что должно получиться в результате, уже показано выше.