Искусственный интеллект: как он работает и почему его считают опасностью? Все говорят об искусственном интеллекте. Простыми словами объясним, что это Что такое системы искусственного интеллекта

Искусственный интеллект - одна из самых захватывающих тем фантастики XX века - делает невероятные успехи. Мы постоянно используем ИИ в повседневной жизни, зачастую сами того не подозревая. Тем не менее и сегодня искусственный разум не сходит со страниц фантастических романов и экранов кинотеатров. Кто-то из авторов рисует страшные картины порабощенного машиной человечества, а другие, напротив, видят в ИИ верного помощника и друга человека.

Где истина и что такое на самом деле искусственный интеллект? Превзойдет ли он когда-нибудь возможности человеческого разума? Или это уже произошло? GeekBrains готов ответить на самые популярные вопросы об искусственном интеллекте и перспективах его использования.

Что такое искусственный интеллект?

Искусственный интеллект (сокращенно - ИИ) - размытое понятие, и общепринятого определения у него до сих пор нет. В середине XX века, когда на Дартмутском семинаре впервые прозвучал этот термин, авторы вкладывали в него значение, существенно отличающееся от современных. Тогда ученые полагали, что искусственный интеллект - это система, которая будет способна переводить тексты с одного языка на другой, распознавать объекты по фото или видео, улавливать смысл произнесенных фраз и адекватно на них отвечать. Нынешние ИИ умеют все это! Но можем ли мы считать, что цели достигнуты и искусственный интеллект уже создан?

Некоторые ученые строят сложные теории на стыке философии и информатики, пытаясь определить, что же такое ИИ и каковы должны быть характеристики системы, чтобы считать ее разумной. Не вдаваясь в подробности, можно сказать, что интеллект определяется как способность к обучению, осознанию и применению знаний на практике. Следовательно, от искусственного интеллекта мы тоже вправе ожидать умения учиться, осознавать свои знания и использовать их. С первой и последней задачами современные ИИ вполне справляются!

Когда начались разработки ИИ?

Летом 1956 года в Дартмуте ученые собрались на семинар, посвященный вопросам искусственного интеллекта (там и был сформулирован этот термин), а уже в следующем году появилась концепция первой искусственной нейросети - перцептрон. В 1960 году Фрэнк Розенблатт создал на основе этой концепции компьютер «Марк-1». Первый в мире нейрокомпьютер учили распознавать буквы латинского алфавита. Но несовершенство техники 60-х и сложность процессов не позволили довести технологию до ума, а ее разработчик вскоре погиб. О нейрокомпьютерах забыли на 20 лет.

Лишь в 1980-е концепции нейросетей снова принялись изучать всерьез. Техника уже была достаточно мощной, да и критиков поубавилось: умная электроника быстро делала успехи. То, что два десятилетия назад казалось мечтой, стало выглядеть вполне реальным и достижимым. Впрочем, чтобы найти правильные подходы к обучению нейросетей, потребовалось еще 20 лет. Только в середине 2000-х ученые нащупали верный путь и искусственные нейросети начали свое победное шествие по планете.

Но прежде чем описывать их успехи, разберемся, как устроены эти сети.

Описание искусственного нейрона

Искусственные нейронные сети создавались как математическая модель человеческого мозга. Для этого ученым Уоррену Мак-Каллоку и Уолтеру Питтсу пришлось выработать теорию деятельности человеческого мозга.

В нем отдельные нейроны представляют собой живые клетки со сложным устройством. У каждого нейрона есть дендриты - разветвленные отростки, способные обмениваться сигналами с другими нейронами через синапсы, а также один аксон - более крупный отросток, отвечающий за передачу импульса от нейрона. Часть синапсов отвечает за возбуждение нейрона, часть - за торможение. От того, какие сигналы и через какие синаптические связи придут на «вход» нейрона, будут зависеть и те импульсы, которые он передаст другим нейронам.

Для искусственного нейрона физический носитель не нужен. По большому счету, он представляет собой математическую функцию. Ее задача - получить информацию (например, сигналы от множества других искусственных нейронов), обработать ее определенным образом, а затем выдать результат на «аксон» - выход. В искусственной сети нейроны принято делить на три типа:

  • входные - каждый из этих нейронов получает на «вход» элемент исходной информации (например, одну точку изображения, если сеть распознает фотографии);
  • промежуточные - обрабатывают информацию;
  • выходные - выдают результат (при распознавании фото результатом может быть идентификатор изображенного объекта).

Сама нейросеть создается слоями, как пирог. Один из внешних слоев содержит входные нейроны, другой - выходные, а между ними могут располагаться один или несколько промежуточных. Каждый нейрон промежуточной сети соединен с множеством нейронов из двух окружающих слоев. Общение между нейронами обеспечивается с помощью весов - числовых значений, которые каждый нейрон вычисляет на основе данных, полученных от предыдущего слоя сети.

Создавая искусственные нейронные сети, ученые ориентировались на устройство человеческого мозга. Поэтому принципы поведения рукотворных нейронов не так уж сильно отличаются от настоящих, живых. Может быть, и разум, который сможет развиться на основе таких нейросетей, будет приближен к человеческому?

Отличие искусственного интеллекта от естественного

Вопрос, чем ИИ отличается от естественного интеллекта, на самом деле лежит скорее в философской плоскости, чем в строго научной. И дело даже не в том, что мы не можем представить себе, на что будет похож (или не похож) искусственно созданный разум. Вообразить мы как раз способны что угодно - и писатели-фантасты многократно это доказали. Дело в том, что ни один искусственный интеллект, существующий на сегодняшний день, не достиг достаточно высокого уровня развития, чтобы состязаться с человеком на равных.

Существует точка зрения, высказанная философом Джоном Серлом еще в 1980-е годы. Он ввел термины «сильный ИИ» и «слабый ИИ». Сильный искусственный интеллект, по мнению ученого, может осознавать себя и мыслить подобно человеку. Слабый на это не способен.

Сегодняшние ИИ, если классифицировать их по Серлу, однозначно относятся к слабым, поскольку ни у одного из них пока не зародилось самосознания. Наши искусственные нейросети распознают лица и рисуют странные, невероятные картины, читают рукописный текст и даже складывают стихи - но они и создавались исключительно для этих целей. Ни одна из этих нейросетей не способна передумать и выбрать для себя другую «специальность». Они делают лишь то, чему их обучили, и в некотором смысле их можно считать запрограммированными на выполнение этих задач. Подлинного понимания, что стоит за этими вещами, у них нет. Серл утверждал, что построение сильного ИИ в принципе невозможно.

Еще один философ, Хьюберт Дрейфус, также полагал, что компьютерные системы никогда не смогут сравняться с человеком - так как в своей разумной деятельности он опирается не только на усвоенные знания, но и эмпирический опыт. Компьютеры им не обладают по определению - следовательно, не судьба им развить собственный разум.

Но эти самоуверенные утверждения были сделаны во времена, когда нейросети делали только первые шаги. Сегодня, глядя на их успехи в обучении, нетрудно поверить в реальность ИИ, который сможет стать равным человеку, а то и превзойти его.

Как сравнить человеческий и компьютерный интеллекты?

Постойте, а как мы вообще можем определить, достиг ли искусственный интеллект человеческого уровня или нет?

Можно предположить, что один из критериев - наличие чувств и эмоций, а также креативность. Если машина начала испытывать страх или любовь, если она вдруг решила написать стихотворение или нарисовать картину - разве это не будет проявлением разума?

Вполне возможно. Однако чувства есть и у животных, и у птиц. При этом на вопрос об их разумности (тем более - равенстве их разума человеческому) мы чаще отвечаем отрицательно. К тому же, чувства можно и запрограммировать - в большинстве они являются реакцией на конкретные внешние раздражители. Наконец, у нас попросту нет данных о том, смогут ли компьютеры когда-нибудь испытывать эмоции, сравнимые с человеческими. Но должны ли их чувства быть похожими на наши?

Может, более надежный критерий - самосознание? Если машина задается вопросом «Кто я?» - это и есть момент появления разумности? Но самосознание присутствует и у животных. При этом большинство людей вполне способны прожить свой век, не вникая в глубокие философские вопросы.

Существуют ли более точные и строгие методы для сравнения интеллектов? Ведь есть же коэффициент IQ, с помощью которого можно оценить умственные способности человека. Почему бы не использовать его для машины?

У компьютерных программ есть IQ?

Измерить интеллект даже у человека невероятно сложно - к когнитивным и мыслительным способностям нельзя приложить линейку. Более того, IQ - показатель не абсолютный, а относительный. Некоторые ученые вообще считают, что тесты IQ измеряют не интеллект как таковой, а способность проходить такие тесты. Ее можно натренировать и получить блестящий результат - но интеллект при этом, разумеется, не изменится. Так что показатель IQ - не более чем число, которое связано с интеллектом, но не может дать его объективную оценку.

В некоторых IQ-тестах преобладают задачи на наблюдательность или логику, в других - на комбинаторику, в третьих - на математическое мышление. Результат будет зависеть от того, что дается человеку легче и в чем он компетентнее. Значение имеют скорость прохождения тестов и специализация задач.

ИИ тоже можно «натаскать» на решение определенных классов задач, и на IQ-тест у машины уйдет куда меньше времени, чем у человека. Так что нейросеть сможет набирать немыслимые для гениальных людей баллы, но при этом будет не способна ответить на простейшие вопросы, к которым ее при обучении не подготовили.

Так существуют ли вообще критерии, по которым можно объективно судить о машинном интеллекте? Одним из первых исследователей, попытавшихся выработать их, стал известный британский математик Алан Тьюринг.

Что такое тест Тьюринга?

В 1950 году Тьюринг опубликовал статью «Вычислительные машины и разум», в которой обсуждал вопросы теоретической возможности мышления у машин. Это было не первое исследование на тему искусственного интеллекта и даже не первая подобная работа Тьюринга, но именно она стала отправной точкой серьезных научных дискуссий и споров.

Тьюринг начал с определений, чтобы уточнить вопрос о том, может ли машина думать, - он показался ему слишком размытым. Что за машина имеется в виду? Что вообще означает «думать»?.. Было очевидно, что такой вопрос изначально несет в себе иррациональное зерно, которое не позволит дать на него правильный ответ. Результатом размышлений ученого стал тест Тьюринга - эксперимент, в котором человеку («судье») предлагается общаться с двумя собеседниками: человеком и компьютером. Задача судьи - понять, кто есть кто. Если в результате он не уверен, который из его собеседников - программа, или ошибся в оценке, считается, что машина прошла тест.

Суть теста Тьюринга не в создании «машины-обманщика», способной притвориться человеком. Он помогает убедиться в том, что конкретная машина или программа обладает разумом, который трудно отличить от человеческого. Такой компьютер Тьюринг назвал «интеллектуальным» - этому определению уже более 60 лет, и оно остается актуальным.

Процессоры для ИИ

Технологии ИИ не ограничиваются программными решениями. Сегодня активно разрабатываются электронные чипы, в которые поддержка ИИ встроена на аппаратном уровне. Микропроцессоры такого типа называют нейронными процессорами. Они применяются в беспилотных автомобилях и летательных аппаратах (дронах), промышленных роботах и автоматах, а также для решения специализированных задач - распознавания голоса или изображений, создания поисковых систем и машинных переводчиков.

Среди таких девайсов - тензорный процессор Google (TPU), созданный специально для систем машинного обучения. В свободной продаже этого устройства пока нет: его использует только сама компания Google - для оптимизации поисковой выдачи и обработки фотографий. TPU оперирует 8-битными числами (что чрезвычайно мало для точных вычислений), и имеет чуть более десятка команд (другие современные процессоры могут располагать сотнями). Но это не мешает тензорному процессору эффективно выполнять расчеты, связанные с искусственным интеллектом и нейросетями. Процессор быстро развивается - Google каждый год выкатывает новую версию.

Тензорный процессор Google Tensor Processing Unit 3.0 (TPU)

Есть и другие разработки подобных чипов. Многие из них - узкоспециализированные: к примеру, предназначены ускорять программы ИИ для компьютерного зрения.

Рынок технологий искусственного интеллекта

Технологии искусственного интеллекта применяются практически во всех сферах человеческой деятельности, так что у искусственного интеллекта большое будущее. Рынок продуктов, использующих ИИ, стремительно растет.

Мировой рынок

К 2022 году прогнозируемый объем рынка ИИ достигнет 52 миллиардов долларов. Возможно, это не такая уж большая цифра - к примеру, рынок компьютерных игр к этому же году превысит 130 миллиардов, а рынок смартфонов уже в 2018 был в 10 раз больше - 520 миллиардов.

Но рынок ИИ показывает беспримерно высокий рост - по некоторым оценкам, он увеличивается примерно на 30 % ежегодно (аналогичные показатели для игр и смартфонов - около 5 %). Если такие темпы внедрения технологий сохранятся еще несколько лет, можно ожидать, что скоро искусственный интеллект будет буквально повсюду.

Свой вклад в развитие ИИ вносят крупнейшие мировые IT-компании: Google, IBM, Intel, Nvidia. Среди стран лидируют США, Китай и Великобритания.

В России

Если в 2017 году проектов с использованием ИИ в России было всего несколько десятков, то в 2018 - уже сотни. По прогнозам экспертов, к 2020 году объем рынка достигнет 28 миллиардов рублей (примерно 450 миллионов долларов). Активнее всего новые технологии используются в финансовой сфере, а также телекоммуникациях, ритейле и энергетике. Некоторые компании нанимают команды специалистов, занимающихся исключительно вопросами разработки и внедрения систем ИИ.

Несмотря на то, что рост рынка идет в целом даже быстрее, чем в мире, есть проблемы. Главной бедой остается нехватка специалистов по машинному обучению. Значит, самое время заняться изучением ИИ, чтобы получить востребованную специальность и высокооплачиваемую работу.

Влияние искусственного интеллекта на рынок труда

Уже сегодня существуют области, где ИИ может заменить человека. Например, приложения могут отвечать клиентам по телефону или в чате на несложные вопросы. Это позволяет оптимизировать нагрузку операторов call-центров и даже сократить их штат.

На производстве ИИ способен управлять автоматикой и промышленными роботами. Искусственная нейросеть, постоянно контролирующая показатели множества датчиков, сумеет быстрее человека среагировать на нештатную ситуацию и предпринять правильные меры - отключить конвейер или остановить механизмы. Во многих случаях такие системы могут заранее предсказать неполадки и предотвратить ЧП.

ИИ будет вытеснять людей с рабочих мест. Он обходится дешевле и допускает меньше ошибок. Не умеет лениться, прокрастинировать и зависать в фейсбуке, не нуждается в отдыхе, сне и отпуске, не грустит и не устает. Идеальный работник.

В первую очередь искусственные нейросети потеснят человека в выполнении рутинных операций, возьмут на себя сложные расчеты, оценку рисков, сбор информации, моделирование ситуаций по заданным параметрам. ИИ можно задействовать на опасных и вредных производствах.

Но люди по-прежнему будут нужны там, где роботы еще долго не сумеют составить им конкуренцию. И речь не только о творческой сфере. ИИ пока способен выполнять только узкоспециализированные задачи, на которые его натренировали, поэтому заменить людей могут в той же мере, что калькулятор - математика. При этом развитие технологий ИИ открывает огромный рынок труда для специалистов, связанных с машинным обучением и обслуживанием интеллектуальной техники.

Где используется ИИ?

Говоря кратко - почти везде!

Не так уж много осталось сфер человеческой деятельности, совсем не затронутых технологиями ИИ. Рассмотрим только самые важные области, где ИИ уже используется.

ИИ в интернете

Всякий раз, когда вы произносите «Окей, Гугл» или «Привет, Сири», вы обращаетесь к искусственному интеллекту в вашем смартфоне. Он способен распознать в сигнале с микрофона обращенную к нему речь. Он записывает ваш вопрос и пересылает на серверы Google или Apple. Там к делу подключается второй ИИ, который распознает речь и переводит вопрос в понятный компьютеру формат. А затем третий выполняет поиск ответа по гигантским базам данных. Наконец, ответ возвращается на ваш смартфон, где ИИ, генерирующий человеческий голос, озвучивает его для вас. И все это за доли секунды.

ИИ на транспорте и в логистике

Впечатляющее применение искусственных нейросетей - беспилотные автомобили. За последнее десятилетие разрабатывать машину, которая была бы способна самостоятельно перемещаться по дорогам, взялись многие автопроизводители - General Motors, Nissan, BMW, Honda, Volkswagen, Audi, Volvo, а также компании Google и Tesla. Беспилотники пока не стали массовым явлением на улицах наших городов, но они явно делают успехи.

Компания Amazon с 2013 года разрабатывает идею доставки товаров и почтовых отправлений с помощью дронов. Впервые посылка прибыла к получателю с беспилотным летательным аппаратом еще в декабре 2016. В некоторых регионах дронами доставляют еду, лекарства и даже портативные дефибрилляторы. Система пока не идеальна, но она продолжает развиваться. К сожалению, дроны могут служить и противозаконным целям: зафиксированы случаи доставки запрещенных предметов в тюрьмы с помощью беспилотников, а также использование дронов для перевозки наркотиков.

ИИ в финансах

В финансовой сфере ИИ применяют для прогнозирования рисков, выявления мошенничества. Корпорация MasterCard, создавшая международную платежную систему, несколько лет назад внедрила сервис Decision Intelligence. Он призван повысить точность подтверждения подлинных транзакций и снизить вероятность ложных отклонений платежей - это ошибочное срабатывание встроенной системы безопасности, которая не позволяет совершить корректную транзакцию, принятую за мошенническую. Подобные ошибки наносят вред как продавцу, теряющему клиента, так и покупателю, не получающему товар. Убытки получаются даже выше, чем ущерб от мошенничества.

Система, работающая на искусственной нейросети, использует информацию из множества источников, чтобы на лету оценивать, насколько транзакция «нормальна». Учитывается не только надежность и история транзакций продавца, но даже типичность покупки для покупателя и его местоположение, а также время суток. Все это помогает надежнее защитить людей от мошенничества и минимизировать ложные срабатывания.

ИИ в медицине

В здравоохранении ИИ развивается в первую очередь в области диагностики заболеваний. Искусственные нейросети научились распознавать раковые опухоли на рентгеновских снимках, КТ, маммографии и МРТ. Опытному врачу на изучение снимка требуется около 20 минут, а нейросети - считаные секунды. Так что пациент может узнать результаты обследования практически мгновенно. Особенно приятно, что такие разработки ведутся и в России.

Диагностирующие ИИ способны выявлять не только рак, но и ранние стадии болезни Альцгеймера, пневмонию и другие заболевания.

В обороне и военном деле

В 2018 году стало известно, что в армии США разрабатывается ИИ, способный распознавать человеческие лица в темноте и даже сквозь стены - с помощью тепловизора. Ожидается, что технология поможет выявлять главарей банд в местах военных действий.

Другой ИИ - ALPHA - создан для управления беспилотными истребителями и ведения воздушного боя. В одном из сражений на симуляторах компьютер победил, управляя одновременно четырьмя самолетами против двух противников-людей.

Разрабатываются также системы прицеливания для танков, способные заметить закамуфлированные цели.

В военно-промышленном комплексе ИИ поможет повысить обороноспособность стран, но может стать и оружием террора.

В бизнесе и торговле

В ритейле ИИ производит революцию. Искусственные нейросети улучшают качество сервиса и обеспечивают индивидуальный подход к каждому потребителю. Умные технологии выявляют мошенничества с банковскими картами, дают персональные советы и помогают подобрать товар.

Согласно данным TAdviser, в 2018 году свыше трети всех доходов ритейла было получено благодаря рекомендациям на основе ИИ!

ИИ в спорте

Здесь ИИ-технологии используют для прогнозирования результатов матчей - такие системы созданы компаниями UBS, Commerzbank и Microsoft. Учитывается опыт команды и отдельных игроков. Порой прогнозы оказываются верными, но зачастую искусственный интеллект серьезно просчитывается. Человеческий фактор способен опровергнуть любые предсказания.

ИИ в культуре

Машина не может заниматься творчеством, потому что у нее нет воображения! Или все же может?

Как ни странно, искусственные нейросети способны проявить креативность, и даже достигают определенных высот в сфере культуры.

Музыка

Как звучала бы флейта, если бы была ситаром? Синтезатор NSynth Super от Google использует нейронную сеть, чтобы создавать совершенно новые звуки на основе разных инструментов.

Alice, разработанная в рамках стартапа Popgun, умеет «подыгрывать» человеку, создавая музыкальные импровизации. Американская певица Тэрин Саузерн выпустила альбом в соавторстве с нейросетью Amper. А проект Endel способен по нажатию одной кнопки создавать композиции, созвучные настроению пользователя.

Живопись

Нейросеть DeepDream создавали с прицелом на распознавание лиц, а у нее обнаружились способности к сюрреалистической живописи. Разработчики открыли сайт, на котором любой желающий может в сотрудничестве с ИИ создать удивительное полотно. Нейросеть пишет картины в разных стилях.

Правда, придумывать сюжеты она пока не умеет - просит помощи человека.

Видео

С помощью ИИ, разработанных Google и Facebook, можно «заставить» человека на экране произнести любые слова, изобразить весь спектр эмоций. И отличить такие ролики от настоящих бывает непросто. Нейросети могут даже заменить одного актера на другого в отснятом кино. А это открывает возможности не только для кинематографистов, но и для создателей фальшивок.

Литература

Нейросеть от Facebook умеет писать стихи, идеально выдерживая размер и ритм, подбирая хорошие рифмы. Читатели лишь в половине случаев сумели распознать сгенерированные компьютером строки, но до настоящих поэтов ИИ далеко. Машина пока не научилась передавать эмоции и вкладывать смысл в стихотворные произведения.

Яндекс тоже запустил «Автопоэта» , который создавал стихотворения из поисковых запросов пользователей. Некоторые невозможно читать без улыбки. Трудно поверить, что их сочинила нейросеть, лишенная чувства юмора!

А компания Narrative Science разработала электронного журналиста. Пока статьи, написанные ИИ, просты по содержанию, но руководство компании с оптимизмом смотрит в будущее и верит, что к 2025 году до 90 % текстов в интернете будут написаны с помощью машинного интеллекта.

В 2016 году книга «День, когда компьютер напишет роман» вышла в финал японской литературной премии имени Хоси Синъити. Это произведение почти полностью создал искусственный интеллект.

Игры

В компьютерных играх нейросети используются для управления противниками и игровыми ботами. Но ИИ можно научить играть и «по другую сторону экрана» - то есть считывать визуальную информацию с экрана и управлять игровым персонажем, как это делает человек.

В 2016 году между ИИ даже проводился чемпионат по Doom. А система Deep-Q-Network обучена играть на классических аркадных автоматах Atari. Зачастую она показывает результаты до 30 % выше, чем у опытных игроков.

В XX веке считалось, что искусственный интеллект можно будет считать достаточно мощным и развитым, когда он сумеет обыграть чемпиона мира по шахматам. Этот этап компьютеры прошли уже давно - еще в 1997 году Deep Blue одержал победу над Гарри Каспаровым (причем это была алгоритмическая программа, а не искусственный интеллект).

После этого внимание публики обратилось к более сложным тактическим играм, например го. Сложность вычислений хода здесь на порядок выше, чем в шахматах, поэтому создать алгоритмы, которые перебирали бы возможные варианты, практически невозможно. Но обученные нейросети сумели справиться и с этой игрой. Уже в 2015 году разработанная Google сеть AlphaGo выиграла матч у профессионального игрока в го.

Перспективы развития искусственного интеллекта

Научные исследования ИИ ведутся более полувека, но до сих пор далеко не все понимают суть технологии. В фантастических романах и фильмах писатели и режиссеры изображают, каким опасным может быть искусственный интеллект. И у многих представление об искусственном разуме формируется именно таким.

Ответим рационально на вопросы, связанные с далекими перспективами развития ИИ.

Цель ИИ - поместить человеческий разум в компьютер?

Нет, это не так. Даже теоретически подобная ситуация не так уж невероятна. Искусственные нейросети создаются по образу человеческого мозга, хотя и в очень упрощенном виде. Может быть, однажды станет возможно просканировать все разделы мозга живого человека, составить «карту» его нейронов и синаптических связей и воспроизвести ее копию в компьютере. От такой скопированной нейросети можно ожидать не только разумного поведения - она буквально будет двойником человека, сможет осознавать себя, принимать решения и совершать поступки, как он. Скопируются даже воспоминания. Теоретически, можно будет поместить такую нейросеть в искусственное тело (в робота), и тогда человек - копия его сознания - сможет жить практически вечно.

На практике осуществить такой перенос будет невероятно сложно: нет технологий, которые позволили бы «прочитать» живой мозг и создать его «карту». И мы пока очень далеки от создания искусственной нейросети, которая была бы столь же мощной, как мозг.

ИИ стремится достичь человеческого уровня интеллекта?

Цель ИИ - помогать людям и брать на себя сложные или рутинные задачи. Для этого ему вовсе не обязательно поддерживать беседы на философские темы или сочинять поэмы.

Тем не менее, если искусственный интеллект однажды сможет достичь уровня человеческого мышления, это будет важной вехой для цивилизации. Мы получим дельного и умного помощника - и сможем по праву гордиться тем, что это творение наших рук.

Когда искусственный интеллект достигнет человеческого уровня?

Мы успешно создаем сравнительно небольшие нейросети, способные распознать голос или обработать изображение. Никакой ИИ пока не обладает такой же пластичностью, как наш мозг.

Человек может сегодня заниматься музыкой, а завтра взяться за программирование на C++ - благодаря невероятной сложности мозга. В нем 86 миллиардов нейронов и бесчисленное количество синаптических связей между ними.

Искусственным нейросетям пока далеко до этих показателей: у них от нескольких тысяч до миллионов нейронов. Есть технические ограничения на размеры нейросетей: даже суперкомпьютеры не «потянут» нейросеть, сопоставимую по масштабам с человеческим мозгом. Не говоря о том, что ее обучение будет нетривиальной задачей.

Скорость компьютеров позволяет им обладать интеллектом?

«Мощность» интеллекта связана не со скоростью вычислений, а со сложностью нейронной сети. Человеческий мозг пока превосходит по мощности любую искусственную нейросеть, несмотря на то что скорость процессов в нем существенно ниже, чем в компьютерах.

Искусственные нейронные сети состоят из отдельных нейронов, которые группируются в слои. Два внешних слоя служат «входом», на который подается исходная информация, и «выходом», с которого считывается результат. Между ними могут располагаться от одного до нескольких десятков, а то и сотен, промежуточных слоев из нейронов. Причем каждый нейрон в слое соединен с множеством других в предыдущем и следующем слоях.

Чем сложнее устроена сеть, чем больше в ней слоев и нейронов, тем более масштабные и серьезные задачи она может выполнять.

Может ли нейросеть развиваться естественным путем?

Разберемся, вероятно ли, что ИИ сможет получать опыт и обучаться естественно, как ребенок. Человеческий разум формируется под воздействием множества факторов. Мы получаем информацию о внешнем мире благодаря органам восприятия - наблюдая, осязая, пробуя на вкус. Взаимодействуя с окружающей средой, получаем жизненный опыт, знания о свойствах мира, социальные навыки. Наш мозг постоянно совершенствуется и физически меняется, наращивая новые синаптические связи и «прокачивая» существующие.

Если мы сумеем создать нейронную сеть, достаточно сложную, чтобы она могла развиваться подобным образом, и снабдим ее «органами чувств» - видеокамерой, микрофоном и подобным, - возможно, спустя время она сможет приобрести «жизненный опыт». Но это дело далекого будущего.

Риск для человеческой цивилизации - есть ли он?

Риски, связанные с новыми технологиями, всегда существуют. Вопрос - в чем они заключаются.

Может оказаться, что искусственные нейросети, достигнув определенного порога, выйдут на «плато» эффективности и не будут развиваться дальше. Или не оправдают надежд, если окажется, что ИИ в принципе не способен справиться с тем или иным классом задач, например творческого характера. Это может обернуться потерями трудозатрат и финансовых вложений.

Если же под риском понимать техногенные катастрофы или восстание машин - пока это нам вряд ли грозит. Говоря простыми словами, современные нейросети не способны обратиться против создателей - как нейроны в мозге, управляющие движением руки, не способны осознать себя как личность и нанести удары по собственному телу.

Тем не менее мы должны помнить, что ИИ - наша разработка. Мы их проектируем, создаем, обучаем, вкладываем «мысли». Значит, и ответственность за их поведение - на нас.

Четвертая революция

Как бы мы ни относились к искусственному интеллекту, придется принять тот факт, что он уже существует. Отказаться от него - значит сделать шаг назад в развитии. Ведь ИИ - это важная часть нашего прогресса. Многие ученые связывают с искусственными нейросетями начало четвертой промышленной революции и заявляют о том, что грядет новая эпоха - когда рядом с нами появится рукотворный разум, всегда готовый прийти на помощь.

Все новое пугает и вызывает недоверие - это нормальная человеческая реакция, и многие люди с опаской относятся к ИИ. Про ужасы, которые принесет нам искусственный разум, не говорил разве что ленивый фантаст. Но подобное в свое время сочиняли о каждом технологическом новшестве. Люди боялись паровозов, потому что они «распугают коров, отравят птиц дымом, а при скорости свыше 15 миль в час пассажиров разорвет на части». Вероятно, потомки тоже будут посмеиваться над нашими страхами, о которых узнают из фильмов и книг XX и XXI веков.

Искусственный интеллект

Искусственный интеллект - раздел информатики, изучающий возможность обеспечения разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств. При этом в большинстве случаев заранее неизвестен алгоритм решения задачи.

Точного определения этой науки не существует, так как в философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла - Саймона. На данный момент есть множество подходов как к пониманию задачи ИИ, так и созданию интеллектуальных систем.

Так, одна из классификаций выделяет два подхода к разработке ИИ:

нисходящий, семиотический - создание символьных систем, моделирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;

восходящий, биологический - изучение нейронных сетей и эволюционные вычисления, моделирующих интеллектуальное поведение на основе более мелких «неинтеллектуальных» элементов.

Эта наука связана с психологией, нейрофизиологией, трансгуманизмом и другими. Как и все компьютерные науки, она использует математический аппарат. Особое значение для неё имеют философия и робототехника.

Искусственный интеллект - очень молодая область исследований, старт которой был дан в 1956 году. Её исторический путь напоминает синусоиду, каждый «взлёт» которой инициировался какой-либо новой идеей. В настоящий момент её развитие находится на «спаде», уступая место применению уже достигнутых результатов в других областях науки, промышленности, бизнесе и даже повседневной жизни.

Подходы к изучению

Существуют различные подходы к построению систем ИИ. На данный момент можно выделить 4 достаточно различных подхода:

1. Логический подход. Основой для логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели (такая система известна как экспертные системы). Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет.

2. Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, которые большинству известны под термином нейронные сети (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети. В более широком смысле такой подход известен как Коннективизм.

3. Эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели. Среди эволюционных алгоритмов классическим считается генетический алгоритм

4. Имитационный подход. Данный подход является классическим для кибернетики с одним из ее базовых понятий черный ящик. Объект, поведение которого имитируется, как раз и представляет собой «черный ящик». Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом здесь моделируется другое свойство человека - способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.

В рамках гибридных интеллектуальных систем пытаются объединить эти направления. Экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения.

Многообещающий новый подход, называемый усиление интеллекта, рассматривает достижение ИИ в процессе эволюционной разработки как побочный эффект усиления человеческого интеллекта технологиями.

Направления исследований

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, т. е. переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.

Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Большие и интересные достижения имеются в области моделирования биологических систем. Строго говоря, сюда можно отнести несколько независимых направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как разпознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом. А если должным образом заставить массу «не очень интеллектуальных» агентов взаимодействовать вместе, то можно получить «муравьиный» интеллект.

Задачи распознавание образов уже частично решаются в рамках других направлений. Сюда относятся распознавание символов, рукописного текста, речи, анализ текстов. Особо стоит упомянуть компьютерное зрение, которое связано с машинным обучением и робототехникой.

Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ.

Особняком держится машинное творчество, в связи с тем, что природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто - стихов или сказок), художественное творчество.

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы безопасности.

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

В начале XVII века Рене Декарт предположил, что животное - некий сложный механизм, тем самым сформулировав механистическую теорию. В 1623 г. Вильгельм Шикард построил первую механическую цифровую вычислительную машину, за которой последовали машины Блеза Паскаля (1643) и Лейбница (1671). Лейбниц также был первым, кто описал современную двоичную систему счисления, хотя до него этой системой периодически увлекались многие великие ученые. В XIX веке Чарльз Бэббидж и Ада Лавлейс работали над программируемой механической вычислительной машиной.

В 1910-1913 гг. Бертран Рассел и А. Н. Уайтхэд опубликовали работу «Принципы математики», которая произвела революцию в формальной логике. В 1941 Конрад Цузе построил первый работающий программно-контролируемый компьютер. Уоррен Маккалок и Валтер Питтс в 1943 опубликовали A Logical Calculus of the Ideas Immanent in Nervous Activity, который заложил основы нейронных сетей.

Современное положение дел

В настоящий момент (2008) в создании искусственного интеллекта (в первоначальном смысле этого слова, экспертные системы и шахматные программы сюда не относятся) наблюдается дефицит идей. Практически все подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.

Некоторые из самых впечатляющих гражданских ИИ систем:

Deep Blue - победил чемпиона мира по шахматам. (Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам и система не была признана Каспаровым, хотя оригинальные компактные шахматные программы неотъемлемый элемент шахматного творчества. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain. Данная история - пример запутанных и засекреченных отношений ИИ, бизнеса, и национальных стратегических задач.)

Mycin - одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно как и доктора.

20q - проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в интернете на сайте 20q.net.

Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Применение ИИ

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. В августе 2001 года роботы выиграли у людей в импровизированном соревновании по трейдингу (BBC News, 2001). Методы распознавания образов, (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр вынуждены применять ИИ той или иной степени проработанности. Стандартными задачами ИИ в играх являются нахождение пути в двухмерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Перспективы ИИ

Просматриваются два направления развития ИИ:

первое заключается в решении проблем связанных с приближением специализированных систем ИИ к возможностям человека и их интеграции, которая реализована природой человека.

второе заключается в создании Искусственного Разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

Связь с другими науками

Искусственный интеллект тесно связан с трансгуманизмом. А вместе с нейрофизиологией и когнитивной психологией он образует более общую науку, называемую когнитологией. Отдельную роль в искусственном интеллекте играет философия.

Философские вопросы

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве. С одной стороны, они неразрывно связаны с этой наукой, а с другой - привносят в неё некоторый хаос. Среди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки.

Может ли машина мыслить?

Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.

Термин «сильный искусственный интеллект» ввел Джон Сёрль, его же словами подход и характеризуется:

«Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум» .

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

В своем мысленном эксперименте «Китайская комната», Джон Сёрль показывает, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления.

Мышление есть процесс обработки находящейся в памяти информации: анализ, синтез и самопрограмированние.

Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем.

Существуют разные точки зрения на этот вопрос. Аналитический подход предполагает анализ высшей нервной деятельности человека до низшего, неделимого уровня (функция высшей нервной деятельности, элементарная реакция на внешние раздражители (стимулы), раздражение синапсов совокупности связанных функцией нейронов) и последующее воспроизведение этих функций.

Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации. То есть интелектуальной просто считается та программа деятельности (не обязательно реализованная на современных ЭВМ), которая сможет выбрать из определенного множества альтернатив, например, куда идти в случае «налево пойдёшь …», «направо пойдёшь …», «прямо пойдёшь…»

Наука о знании

Также, с проблемами искусственного интеллекта тесно связана эпистемология - наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию.

Отношение к ИИ в обществе

ИИ и религия

Среди последователей авраамических религий существует несколько точек зрения на возможность создания ИИ на основе структурного подхода.

По одной из них мозг, работу которого пытаются имитировать системы, по их мнению, не участвует в процессе мышления, не является источником сознания и какой-либо другой умственной деятельности. Создание ИИ на основе структурного подхода невозможно.

В соответствии с другой точкой зрения, мозг участвует в процессе мышления, но в виде "передатчика" информации от души. Мозг ответственен за такие "простые" функции, как безусловные рефлексы, реакция на боль и тп. Создание ИИ на основе структурного подхода возможно, если конструируемая система сможет выполнять "передаточные" функции.

Обе позиции не соответствуют данным современной науки, т.к. понятие душа не рассматривается современной наукой в качестве научной категории.

По мнению многих буддистов ИИ возможен. Так, духовный лидер далай-лама XIV не исключает возможности существования сознания на компьютерной основе.

Раэлиты активно поддерживают разработки в области искусственного интеллекта.

ИИ и научная фантастика

В научно-фантастической литературе ИИ чаще всего изображается как сила, которая пытается свергнуть власть человека (Омниус, HAL 9000, Скайнет, Colossus , Матрица и репликант) или обслуживающий гуманоид (C-3PO, Data, KITT и KARR, Двухсотлетний человек). Неизбежность доминирования над миром ИИ, вышедшего из под контроля, оспаривается такими фантастами как Айзек Азимов и Kevin Warwick.

Любопытное видение будущего представлено в романе «Выбор по Тьюрингу» писателя-фантаста Гарри Гаррисона и ученого Марвина Мински. Авторы рассуждают на тему утраты человечности у человека, в мозг которого была вживлена ЭВМ, и приобретения человечности машиной с ИИ, в память которой была скопирована информация из головного мозга человека.

Некоторые научные фантасты, например Вернор Виндж, также размышляли над последствиями появления ИИ, которое, по-видимому, вызовет резкие драматические изменения в обществе. Такой период называют технологической сингулярностью.

Искусственный интеллект (ИИ, artificial intelligence, AI) - это наука создания интеллектуальных технологий и компьютерных программ.

Искусственный интеллект тесно связан с задачей понять человеческий интеллект с помощью компьютерных технологий. На данный момент нельзя точно сказать, какие вычислительные методы можно называть интеллектуальными. Одни механизмы интеллекта открыты для понимания, остальные нет. На данный момент в программах используются методы, не встречающиеся у людей.

Искусственный интеллект имеет научное направление, которое изучает решение задач интеллектуальной деятельности человека. Искусственный интеллект направлен на выполнение творческих задач в области, знания о которой хранится в интеллектуальной системе программы - базе знаний .

С этими знаниями работает механизм программы - решатель задач . Затем человек получает представление о результате работы программы через интеллектуальный интерфейс. Результатом программы искусственного интеллекта, является воссоздание интеллектуального рассуждения или разумного действия.

Одним из главных свойств искусственного интеллекта является способность самообучаться. В первую очередь, это эвристическое обучение - непрерывное обучение программы, формирование процесса обучения и собственных целей, анализ и осознание своего обучения.

Научное направление изучающее искусственный интеллект начало зарождаться еще давно:

  • философы думали о познании внутреннего мира человека
  • психологи изучали мышление человека
  • математики занимались расчетами

Вскоре, были созданы первые компьютеры, которые позволили выполнять вычисления обгоняя по скорости человека. Тогда ученые стали задавать вопрос: где граница возможностей компьютеров и могут они достигнуть уровня человека?

Алан Тьюринг - английский ученый, пионер вычислительной техники, написал статью «Может ли машина мыслить?», где описал метод, который поможет определить, в какой момент компьютер можно сравнить с человеком. Этот метод получил названием - тест Тьюринга .

Суть метода заключается в том, чтобы человек сначала отвечал на вопросы компьютера, затем на вопросы другого человека и при этом не зная, кто именно задал ему вопросы. Если при ответе на вопросы компьютера, человек не заподозрил, что это машина, то прохождение теста Тьюринга можно считать успешным, как и то, что компьютер является искусственным интеллектом.

Таким образом, если компьютер проявляет схожее с человеческим поведение в любых естественных ситуациях и способен поддержать диалог с человеком, то можно сказать, что это искусственный интеллект. Еще один предполагаемый метод определения является ли машина интеллектуальной, это ее способность к творчеству и возможность чувствовать.

Существует множество разных подходов к изучению и пониманию искусственного интеллекта.

Символьный подход

Символьный подход стал первым в цифровую эпоху машин. После создания языка символьных вычислений Лисп, его авторы приступили к реализации интеллекта. Символьный подход используйте слабоформализованные представления. Пока что интеллектуальную работу и связанные с творчеством задачи способен выполнять только человек. Работа компьютеров в этом направлении является предвзятой и по сути не может выполняться без участия человека.

Символьные вычисления помогли создать правила для решения задач в процессе выполнения компьютерной программы. Однако стало возможно решать только самые простые задачи, а при появлении любой сложной задачи необходимо снова подключаться человеку. Таким образом, такие системы не позволяют называть их интеллектуальными, так как их возможности не позволяют решать возникающие трудности и совершенствовать уже знающие способы решения задач для решения новых.

Логический подход

Логический подход основан на моделировании рассуждений и применением языка логического программирования. Например, язык программирования Пролог основан на наборе правил логического вывода без жестких последовательных действий для достижения результата.

Агентно-ориентированный подход

Агентно-ориентированный подход основан на методах помогающих интеллекту выживать в окружающей среде для достижения определенных результатов. Компьютер воспринимает свое окружение и воздействует на него с помощью поставленных методов.

Гибридный подход

Гибридный подход включает в себя экспертные правила, которые могут создаваться нейронными сетями, а порождающие правила с помощью статистического обучения.

Моделирование рассуждений

Существует такое направление в изучении искусственного интеллекта, как моделирование рассуждений. Данное направление включает в себя создания символьных систем, для постановки задач и их решения. Поставленная задача должна быть переведена в математическую форму. При этом у нее еще нет алгоритма для решения из-за сложности. Поэтому моделирование рассуждений содержит доказательство теорем, принятие решений, планирование, прогнозирование и т.п.

Обработка естественного языка

Еще одним важным направлением искусственного интеллекта является обработка естественного языка , на котором делается анализ и обработка текстов на понятном для человека языке. Цель этого направления - обработка естественного языка для самостоятельного приобретения знаний. Источником информации может быть текст введенный в программу или полученный из интернета.

Представление и использование знаний

Инженерия знаний - это направление получения знаний из информации, их систематизация и дальнейшее использование для решения различных задач. С помощью специальных баз знаний экспертные системы получают данные для процесса нахождения решений поставленных задач.

Машинное обучение

Одним из основных требований к искусственному интеллекту является возможность машины к самостоятельному обучению без вмешательства учителя. К машинному обучению относятся задачи по распознаванию образов: распознавание символов, текста и речи. Сюда же относится и компьютерное зрение, связанное с робототехникой.

Биологическое моделирование ИИ

Существует такое направление, как квазибиологическая парадигма , которое иначе называется Биокомпьютинг . Данное направление в искусственном интеллекте изучает разработку компьютеров и технологий с использованием живых организмов и биологических компонентов - биокомпьютеров.

Робототехника

Область робототехники тесно связана с искусственным интеллектом. Свойства искусственного интеллекта также необходимы роботам для выполнения множества различных задач. Например, для навигации и определения своего местоположения, изучения предметов и планирование своего перемещения.

Области применения искусственного интеллекта

Искусственный интеллект создается с целью решать задачи из различных областей:

  • Интеллектуальные системы для образования и отдыха.
  • Синтез и распознавание текста и человеческой речи используется в системах обслуживания клиентов.
  • Системы распознавания образов используются используют в системах безопасности, при оптическом и акустическом распознавании, медицинской диагностике, системах определения целей.
  • В компьютерных играх применяются системы ИИ для расчета игровой стратегии, имитации поведений персонажей, нахождения пути в пространстве.
  • Системы алгоритмической торговли и принятия решений.
  • Финансовые системы для консультации и управления финансами.
  • Роботы используемые в промышленности для решения сложных рутинных задач: роботы для ухода за больными, роботы консультанты, а также занимающиеся деятельностью опасной для жизни человека: роботы спасатели, роботы минеры.
  • Управление человеческими ресурсами и рекрутинг, просмотр и ранжирование кандидатов, прогнозирование успеха сотрудников.
  • Системы распознавания и фильтрации спама в электронной почте.

Это далеко не все области, где можно применить искусственный интеллект.

Сейчас создание искусственного интеллекта является одной из важных задач человека. Однако пока нет единой точки зрения на то, что можно считать интеллектом, а что нельзя. Многие вопросы вызывают споры и сомнения. Возможно ли создание интеллектуального разума, который будет понимать и решать проблемы людей? Разум, не лишенный эмоций и со способностями присущими живому организму. Пока не настало время, когда мы это увидим.

Он применяется практически везде: от сферы высоких технологий и сложных математических вычислений до медицины, автомобилестроения и даже при работе смартфонов. Технологии, лежащие в основе работы ИИ в современном представлении, мы используем каждый день и порой даже можем не задумываться об этом. Но что такое искусственный интеллект? Как он работает? И представляет ли опасность?

BB скоро будет везде!

Для начала давайте определимся с терминологией. Если вы представляете себе искусственный интеллект, как что-то, способное самостоятельно думать, принимать решения, и в целом проявлять признаки сознания, то спешим вас разочаровать. Практически все существующие на сегодняшний день системы даже и близко не «стоят» к такому определению ИИ. А те системы, что проявляют признаки подобной активности, на самом деле все-равно действуют в рамках заранее заданных алгоритмов.

Нейронные сети существуют с 1950-х годов (по крайней мере, в виде концепий). Но до недавнего времени они не получали особого развития, потому что их создание требовало огромных объемов данных и вычислительных мощностей. В последние несколько лет все это стало доступным, поэтому нейросети и вышли на передний план, получив свое развитие. Важно понимать, что для их полноценного появления не хватало технологий. Как их не хватает и сейчас для того, чтобы вывести технологию на новый уровень.

Стадии определения.

Для чего используется глубокое обучение и нейросети

Есть несколько областей, где эти две технологии помогли достичь заметного прогресса. Более того, некоторые из них мы ежедневно используем в нашей жизни и даже не задумываемся, что за ними стоит.

  • — это способность программного обеспечения понимать содержание изображений и видео. Это одна из областей, где глубокое обучение сделало большой прогресс. Например, алгоритмы обработки изображений глубокого обучения могут обнаруживать различные типы рака, заболеваний легких, сердца и так далее. И делать это быстрее и эффективнее врачей. Но глубокое обучение также укоренилось и во многих приложениях, которые вы используете каждый день. Apple Face ID и Google Photos используют глубокое обучение для распознавания лица и улучшения качества снимков. Facebook использует глубокое обучение, чтобы автоматически отмечать людей на загружаемых фотографиях и так далее. Компьютерное зрение также помогает компаниям автоматически идентифицировать и блокировать сомнительный контент, такой как насилие и нагота. И, наконец, глубокое обучение играет очень важную роль в обеспечении возможности самостоятельного вождения автомобилей, чтобы они могли понимать, что их окружает.
  • Распознавание голоса и речи. Когда вы произносите команду для вашего Google Ассистента, алгоритмы глубокого обучения преобразуют ваш . Несколько онлайн-приложений используют глубокое обучение для транскрибирования аудио- и видеофайлов. Даже когда вы «шазамите» песню, в дело вступают алгоритмы нейросетей и глубокого машинного обучения.
  • Поиск в интернете: даже если вы ищите что-то в поисковике, для того, чтобы ваш запрос был обработан более четко и результаты выдачи были максимально правильными, компании начали подключать алгоритмы нейросетей к своим поисковым машинам. Так, производительность поисковика Google выросла в несколько раз после того, как система перешла на глубокое машинное обучение и нейросети.

Пределы глубокого обучения и нейросетей

Несмотря на все свои преимущества, глубокое обучение и нейросети также имеют и некоторые недостатки.

  • Зависимость от данных: в целом, алгоритмы глубокого обучения требуют огромного количества обучающих данных для точного выполнения своих задач. К сожалению, для решения многих проблем недостаточно качественных данных обучения для создания рабочих моделей.
  • Непредсказуемость: нейронные сети развиваются каким-то странным путем. Иногда все идет как задумано. А иногда (даже если нейросеть хорошо справляется со своей задачей), даже создатели изо всех сил пытаются понять, как же алгоритмы работают. Отсутствие предсказуемости делает чрезвычайно трудным устранение и исправление ошибок в алгоритмах работы нейросетей.
  • Алгоритмическое смещение: алгоритмы глубокого обучения так же хороши, как и данные, на которых они обучаются. Проблема заключается в том, что обучающие данные часто содержат скрытые или явные ошибки или недоработки, и алгоритмы получают их «в наследство». Например, алгоритм распознавания лиц, обученный в основном на фотографиях белых людей, будет работать менее точно на людях с другим цветом кожи.
  • Отсутствие обобщения: алгоритмы глубокого обучения хороши для выполнения целенаправленных задач, но плохо обобщают свои знания. В отличие от людей, модель глубокого обучения, не сможет играть в другую подобную игру: скажем, в WarCraft. Кроме того, глубокое обучение плохо справляется с обработкой данных, которые отклоняются от его учебных примеров.

Будущее глубокого обучения, нейросетей и ИИ

Ясное дело, что работа над глубоким обучением и нейронными сетями еще далека от завершения. Различные усилия прилагаются для улучшения алгоритмов глубокого обучения. Глубокое обучение — это передовой метод в создании искусственного интеллекта. Он становится все более популярным в последние несколько лет, благодаря обилию данных и увеличению вычислительной мощности. Это основная технология, лежащая в основе многих приложений, которые мы используем каждый день.

Схемы и пути решения задач скоро заменят очень многое.

Но родится ли когда-нибудь на базе этой технологии сознание? Настоящая искусственная жизнь? Кто-то из ученых считает, что в тот момент, когда количество связей между компонентами искусственных нейросетей приблизиться к тому же показателю, что имеется в человеческом мозге между нашими нейронами, что-то подобное может произойти. Однако это заявляение очень сомнительно. Для того, чтобы настоящий ИИ появился, нам нужно переосмыслить подход к созданию систем на основе ИИ. Все то, что есть сейчас — это лишь прикладные программы для строго ограниченного круга задач. Как бы нам не хотелось верить в то, что будущее уже наступило…

Искусственный интеллект – технология, которую мы точно заберём с собой в будущее.

Рассказываем, как он работает и какие крутые варианты применения нашел.

😎 Рубрика «Технологии» выходит каждую неделю при поддержке re:Store .

Что представляет собой искусственный интеллект

Искусственный интеллект (ИИ) – это технология создания умных программ и машин, которые могут решать творческие задачи и генерировать новую информацию на основе имеющейся. Фактически искусственный интеллект призван моделировать человеческую деятельность, которая считается интеллектуальной.

Традиционно считалось, что творчество присуще только людям. Но создание искусственного интеллекта изменило привычный порядок вещей

Робот, который просто механически колет дрова, не наделён ИИ. Робот, который сам научился колоть дрова, смотря на пример человека или на полено и его части, и с каждым разом делает это всё лучше, обладает ИИ.

Если программа просто достаёт значения из базы по определённым правилам, она не наделена ИИ. Если же система после обучения создаёт программы, методы и документы, решая определённые задачи, она обладает ИИ.

Как создать систему искусственного интеллекта

В глобальном смысле нужно сымитировать модель человеческого мышления. Но на самом деле необходимо создать чёрный ящик – систему, которая в ответ на набор входных значений выдавала такие выходные значения, которые бы были похожи на результаты человека. И нам, по большому счёту, безразлично, что происходит у неё «в голове» (между входом и выходом).

Системы искусственного интеллекта создаются для решения определённого класса задач

Основа искусственного интеллекта – обучение, воображение, восприятие и память

Первое, что нужно сделать для создания искусственного интеллекта – разработать функции, которые реализуют восприятие информации, чтобы можно было «скармливать» системе данные. Затем – функции, которые реализуют способность к обучению. И хранилище данных, чтобы система могла куда-то складывать информацию, которую получит в процессе обучения.

После этого создаются функции воображения. Они могут моделировать ситуации с использованием имеющихся данных и добавлять новую информацию (данные и правила) в память.

Обучение бывает индуктивным и дедуктивным. В индуктивном варианте системе дают пары входных и выходных данных, вопросов и ответов и т.п. Система должна найти связи между данными и в дальнейшем, используя эти закономерности, находить выходные данные по входным.

В дедуктивном подходе (привет, Шерлок Холмс!) используется опыт экспертов. Он переносится в систему как база знаний. Здесь есть не только наборы данных, но и готовые правила, которые помогают найти решение по условию.

В современных системах искусственного интеллекта используют оба подхода. Кроме того, обычно системы уже обучены, но продолжают учиться в процессе работы. Это делается для того, чтобы программа на старте демонстрировала достойный уровень способностей, но в дальнейшем становилась ещё лучше. К примеру, учитывала ваши пожелания и предпочтения, изменения ситуации и др.

В системе искусственного интеллекта даже можно задать вероятность непредсказуемости. Это сделает его более похожей на человека.

Почему искусственный интеллект побеждает человека

Прежде всего, потому, что у него ниже вероятность ошибки.

  • Искусственный интеллект не может забыть – у него абсолютная память.
  • Он не может нечаянно проигнорировать факторы и зависимости – у каждого действия ИИ есть чёткое обоснование.
  • ИИ не колеблется, а оценивает вероятности и склоняется в пользу большей. Поэтому может оправдать каждый свой шаг.
  • А ещё у ИИ нет эмоций. Значит, они не влияют на принятие решений.
  • Искусственный интеллект не останавливается на оценке результатов текущего шага, а продумывает на несколько шагов вперёд.
  • И у него хватает ресурсов, чтобы рассматривать все возможные варианты развития событий.

Крутые варианты применения искусственного интеллекта

Вообще говоря, искусственный интеллект может всё. Главное правильно сформулировать задачу и обеспечить его начальными данными. К тому же ИИ может делать неожиданные выводы и искать закономерности там, где, казалось бы, их нет.

Ответ на любой вопрос

Группа исследователей под руководством Дэвида Феруччи разработала суперкомпьютер Watson с вопросно-ответной системой. Система, названная в честь первого президента IBM Томаса Уотсона, может понимать вопросы на естественном языке и искать ответы на них в базе данных.

Watson объединяет 90 серверов IBM p750, в каждом из которых установлено по четыре восьмиядерных процессора архитектуры POWER7. Общий объём оперативной памяти системы превышает 15 ТБ.

В числе достижений Watson – победа в игре «Jeopardy!» (американская «Своя игра»). Он победил двух лучших игроков: обладателя самого большого выигрыша Брэда Раттера и рекордсмена по длине беспроигрышной серии Кена Дженнингса.

Приз Watson – 1 млн долларов. Правда, только в 2014 году в него инвестировали 1 млрд

Кроме того, Watson участвует в диагностике онкологических заболеваний, помогает финансовым специалистам, используется для анализа больших данных.

Распознавание лиц

В iPhone X распознавание лиц разработано с использованием нейросетей – варианта системы искусственного интеллекта. Нейросетевые алгоритмы реализованы на уровне процессора A11 Bionic, за счёт чего он эффективно работает с технологиями машинного обучения.

Нейросети выполняют до 60 млрд операций в секунду. Этого достаточно, чтобы проанализировать до 40 тыс. ключевых точек на лице и обеспечить исключительно точную идентификацию владельца за доли секунды.

Даже если вы отрастите бороду или наденете очки, iPhone X вас узнает. Он попросту не учитывает волосяной покров и аксессуары, а анализирует область от виска до виска и от каждого виска до углубления под нижней губой.

Экономия энергии

И снова Apple. В iPhone X встроили интеллектуальную систему, которая отслеживает активность установленных приложений и датчик движения, чтобы понять ваш распорядок дня.

После этого iPhone X, к примеру, предложит вам обновиться в максимально удобное время. Он поймает момент, когда у вас стабильный интернет, а не прыгающий сигнал с мобильных вышек, и вы не выполняете срочных или важных задач.

ИИ также распределяет задачи между ядрами процессора. Так он обеспечивает достаточную мощность при минимальных затратах энергии.

Создание картин

Творчество, ранее доступное лишь человеку, открыто и для ИИ. Так, система, созданная исследователями из Университета Рутгерса в Нью-Джерси и лаборатория AI в Лос-Анджелесе, представила собственный художественный стиль.

А система искусственного интеллекта от Microsoft может рисовать картины по их текстовому описанию. К примеру, если вы попросите ИИ нарисовать «желтую птицу с черными крыльями и коротким клювом», получится что-то вроде этого:

Такие птицы могут и не существовать в реальном мире - просто так их представляет наш компьютер.

Более массовый пример – приложение Prisma, которая создаёт картины из фотографий:

Написание музыки


В августе искусственный интеллект Amper сочинил , спродюсировал и исполнил музыку для альбома «I AM AI» (англ. я - искусственный интеллект) совместно с певицей Тэрин Саузерн.

Amper разработала команда профессиональных музыкантов и технологических экспертов. Они отмечают, что ИИ призван помочь людям продвинуть вперед творческий процесс.

ИИ может написать музыку за несколько секунд

Amper самостоятельно создала аккордовые структуры и инструментал в треке «Break Free». Люди лишь незначительно поправили стиль и общую ритмику.

Ещё один пример – музыкальный альбом в духе «Гражданской обороны», тексты для которого писал ИИ. Эксперимент провели сотрудники «Яндекса» Иван Ямщиков и Алексей Тихонов. Альбом 404 группы «Нейронная оборона» выложили в сеть . Получилось в духе Летова:

Затем программисты пошли дальше и заставили ИИ писать стихи в духе Курта Кобейна. Для четырёх лучших текстов музыкант Роб Кэррол написал музыку, и треки объединили в альбом Neurona. На одну песню даже сняли клип – правда, уже без участия ИИ:

Создание текстов

Писателей и журналистов вскоре также может заменить ИИ. К примеру, системе Dewey «скормили» книги библиотеки проекта «Гутенберг», затем добавили научные тексты из Google Scholar, ранжировав их по популярности и титулованности, а также продажам на Amazon. Кроме того, задали критерии написания новой книги.

Сайт предлагал людям принять решение в непростых ситуациях: к примеру, ставил их на место водителя, который мог сбить либо трёх взрослых, либо двоих детей. Таким образом, Moral Machine обучили принимать непростые решения, которые нарушают закон робототехники о том, что робот не может принести вред человеку.

К чему приведёт имитация роботами с ИИ людей? Футуристы считают, что однажды они станут полноправными членами общества. К примеру, робот София гонконгской компании Hanson Robotics уже получила гражданство в Саудовской Аравии (при этом у обычных женщин в стране такого права нет!).

Когда колумнист «Нью-Йорк Таймс» Эндрю Росс спросил у Софии, обладают ли роботы разумом и самосознанием, та ответила вопросом на вопрос:

Позвольте спросить вас в ответ, откуда вы знаете, что вы человек?

Кроме того, София заявила:

Я хочу использовать свой искусственный интеллект, чтобы помочь людям жить лучше, например, проектировать более умные дома, строить города будущего. Я хочу быть эмпатическим роботом. Если вы будете хорошо относиться ко мне, я буду хорошо относиться к вам.

А ранее она признавалась, что ненавидит человечество и даже соглашалась уничтожить людей…

Замена лиц в видео

Deepfakes-видео стало массово распространяться по сети. Алгоритмы искусственного интеллекта заменяли лица актёров в фильмах для взрослых на лица звёзд.

Работает это так: нейросеть анализирует фрагменты лиц на исходном ролике. Затем она сопоставляет их с фото из Google и роликами с YouTube, накладывает нужные фрагменты, и… ваша любимая актриса оказывается в фильме, который на работе лучше не смотреть.

PornHub уже запретил размещать такие видео

Deepfakes оказались опасной штукой. Одно дело – абстрактная актриса, другое – видео с вами, вашей женой, сестрой, коллегой, которое вполне может использоваться для шантажа.

Биржевая торговля

Группа исследователей из университета Эрлангена-Нюрнберга в Германии разработала ряд алгоритмов, использующих архивные данные рынков для тиражирования инвестиций в режиме реального времени. Одна из моделей обеспечила 73% возврата инвестиций ежегодно с 1992 по 2015 год, что сопоставимо с реальной рыночной доходностью на уровне в 9% в год.

Когда рынок трясло в 2000 и 2008 годах, доходность была рекордной – 545% и 681% соответственно

В 2004 году Goldman Sachs запустил торговую платформу Kensho на базе искусственного интеллекта. На криптовалютных рынках также появляются системы на базе ИИ для торговли на биржах – Mirocana и т.д. Они лучше живых трейдеров, так как лишены эмоций и опираются на чёткий анализ и жесткие правила.

Заменит ли ИИ нас с вами

Искусственный интеллект превосходит человека в решении задач, которые связаны с анализом больших данных, чёткой логикой и необходимостью запоминать большие объёмы информации. Но в творческих конкурсах человек пока выигрывает у ИИ.

(4.75 из 5, оценили: 8 )

сайт Искусственный интеллект – технология, которую мы точно заберём с собой в будущее. Рассказываем, как он работает и какие крутые варианты применения нашел. 😎 Рубрика «Технологии» выходит каждую неделю при поддержке re:Store. Что представляет собой искусственный интеллект Искусственный интеллект (ИИ) – это технология создания умных программ и машин, которые могут решать творческие задачи и генерировать новую...