Как рассчитать потребляемую мощность. В чем измеряется объем электроэнергии. Измерение электрической энергии. Получение электрической энергии. Единицы измерения электрического тока Как измерить энергию

Энергия вещества - это его способность выполнять работу. Существует много видов энергии. Химикам наиболее "интересна" кинетическая и потенциальная энергия.

1. Кинетическая энергия

Кинетическая энергия - энергия движения.

Любое движущееся тело обладает кинетической энергией. Чем больше масса тела и его скорость - тем большей кинетической энергией оно обладает. При соприкосновении с другим телом часть кинетической энергии передается этому телу. Например, ударив бильярдным кием по шару, мы передаем ему (шару) какую-то часть кинетической энергии - шар начинает двигаться. При соударении его с другим шаром, часть энергии опять передается (перераспределяется) и в движении будут уже два шара. Кинетическая энергия может превращаться в энергию другого вида. Так на гидроэлектростанции кинетическая энергия падающей воды преобразуется в электрическую энергию, вырабатываемую турбиной генератора.

Помните закон сохранения энергии? - "Энергия никуда не исчезает бесследно и не появляется из ниоткуда - она лишь переходит из одного вида в другой" (тут следует сделать оговорку, что это не относится к ядерным реакциям).

2. Потенциальная энергия

Потенциальная энергия - это "скрытая" энергия , которая зависит от положения тел и способна проявиться при определенных условиях.

Так, сосулька, свисающая с крыши дома, не обладает кинетической энергией (поскольку она не движется), но зато у нее есть "неплохая" потенциальная энергия (которая тем больше, чем массивнее сосулька и выше крыша дома). При определенных условиях (когда солнышко хорошо пригреет) сосулька может оторваться и упасть на землю. В этом случае, заложенная в ней потенциальная энергия перейдет в кинетическую.

Однако, химикам такие аспекты потенциальной энергии не интересны. Их интересует потенциальная энергия, заложенная в химических связях:
- как энергия, съеденной нами пищи, хранится в организме?
- почему автомобиль без бензина не едет?...

3. Как измерить энергию

Физикам измерить потенциальную и кинетическую энергии тела не составляет трудности. Для этого надо знать массу тела, его скорость (кинетическая энергия) или расстояние до земли (потенциальная энергия).

Для химиков задача усложняется.

Потенциальная энергия, хранящаяся в химических связях, зависит от вида и количества связей, которые могут быть разорваны.

Для измерения кинетической энергии вещества достаточно измерить его температуру. При этом измеряется средняя кинетическая энергия частиц, которые движутся в веществе.

Мера общего количества энергии какого-либо вещества - это его теплота. Например, температура воды в вашем стакане и в Черном море может быть одинакова. Но, чтобы повысить ее, скажем на 1°С, надо совершенно разное количество энергии для стакана и для моря. Т.о., можно сказать, что теплота учитывает такой компонент вещества, как объем.

Единица измерения теплоты в системе СИ является Джоуль. Однако, "в ходу" и другая метрическая система - калория (кал):

1 кал = 4,184 Дж

Калория довольно маленькая единица измерения:

Поэтому, чаще используют килокалорию (ккал): 1 ккал = 1000 кал.


Киловатт - кратная единица, образованная от «Ватт»

Ватт

Ватт (Вт, W) - системная единица измерения мощности.
Ватт - универсальная производная единица в системе СИ, имеющая специальное наименование и обозначение. Как единица измерения мощности, «Ватт» был признан в 1889г. Тогда же эта единица и была названа в честь Джеймса Уатта (Ватта).

Джеймс Ватт - человек, который придумал и сделал универсальную паровую машину

Как производная единица системы СИ, «Ватт» был включён в неё в 1960г.
С тех пор, в Ваттах измеряется мощность всего подряд.

В системе СИ, в Ваттах, допускается измерять любую мощность - механическую, тепловую, электрическую и т.д. Также допускается образование кратных и дольных единиц от исходной единицы (Ватт). Для этого рекомендовано использовать набор стандартных префиксов системы СИ, вида - кило, мега, гига и т.д.

Единицы измерения мощности, кратные ватт:

  • 1 ватт
  • 1000 ватт = 1 киловатт
  • 1000 000 ватт = 1000 киловатт = 1 мегаватт
  • 1000 000 000 ватт = 1000 мегаватт = 1000 000 киловатт = 1гигаватт
  • и т.д.

Киловатт-час

В системе СИ нет такой единицы измерения.
Киловатт-час (кВт⋅ч, kW⋅h) - это внесистемная единица, которая выведена исключительно для учёта использованной или произведённой электроэнергии. В киловатт-часах учитывается количество потреблённой или произведённой электроэнергии.

Использование «киловатт-час», как единицы измерения, на территории России регламентирует ГОСТ 8.417-2002, в котором однозначно указано наименование, обозначение и область применения для «киловатт-час».

Скачать ГОСТ 8.417-2002 (cкачиваний: 2305)

Выдержка из ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин», п.6 Единицы, не входящие в СИ (фрагмент таблицы 5).

Внесистемные единицы, допустимые к применению наравне с единицами СИ

Для чего нужен киловатт-час

ГОСТ 8.417-2002 рекомендует использовать «киловатт-час», как основную единицу измерения для учёта количества использованной электроэнергии. Потому что «киловатт-час» - это наиболее удобная и практичная форма, позволяющая получать наиболее приемлемые результаты.

При этом, ГОСТ 8.417-2002 абсолютно не возражает против использования кратных единиц, образованных от «киловатт-час» в тех случаях, когда это уместно и необходимо. Например, при лабораторных работах или при учёте выработанной электроэнергии на электростанциях.

Образованные кратные единицы от «киловатт-час» выглядят, соответственно:

  • 1 киловатт-час = 1000 ватт-час,
  • 1 мегаватт-час = 1000 киловатт-час,
  • и т.д.

Как правильно писать киловатт-час⋅

Правописание термина «киловатт-час» по ГОСТ 8.417-2002:

  • полное наименование нужно писать через дефис:
    ватт-час, киловатт-час
  • краткое обозначение нужно писать через точку:
    Вт⋅ч, кВт⋅ч, kW⋅h

Прим. Некоторые браузеры неверно интерпретируют HTML-код страницы и вместо точки (⋅) отображают знак вопроса (?) или иной кракозябр.

Аналоги ГОСТ 8.417-2002

Большинство национальных технических стандартов нынешних постсоветских стран увязаны со стандартами бывшего Союза, поэтому в метрологии любой страны постсоветского пространства можно найти аналог российского ГОСТ 8.417-2002, либо ссылку на него, либо его переработанный вариант.

Обозначение мощности электроприборов

Общепринятая практика - обозначать мощность электроприборов на их корпусе.
Возможно следующее обозначение мощности электрооборудования:

  • в ваттах и киловаттах (Вт, кВт, W, kW)
    (обозначение механической или тепловой мощности электроприбора)
  • в ватт-часах и киловатт-часах (Вт⋅ч, кВт⋅ч, W⋅h, kW⋅h)
    (обозначение потребляемой электрической мощности электроприбора)
  • в вольт-амперах и киловольт-амперах (VA, кVA)
    (обозначение полной электрической мощности электроприбора)

Единицы измерения для обозначения мощности электроприборов

ватт и киловатт (Вт, кВт, W, kW) - единицы измерения мощности в системе СИ Используются для обозначения общей физической мощности чего угодно, в том числе и электроприборов. Если на корпусе электроагрегата стоит обозначение в ваттах или киловаттах - это значит, что этот электроагрегат, во время своей работы, развивает указанную мощность. Как правило, в «ваттах» и «киловаттах» указывается мощность электроагрегата, который является источником или потребителем механического, теплового или иного вида энергии. В «ваттах» и «киловаттах» целесообразно обозначать механическую мощность электрогенераторов и электродвигателей, электронагревательных приборов и агрегатов и т.д. Обозначение в «ваттах» и «киловаттах» производимой или потребляемой физической мощности электроагрегата происходит при условии, что применение понятия электрической мощности будет дезориентировать конечного потребителя. Например, для владельца электронагревателя важно количество полученного тепла, а уже потом - электрические расчёты.

ватт-час и киловатт-час (Вт ⋅ч, кВт ⋅ч, W ⋅h, kW ⋅h) - внесистемные единицы измерения потребляемой электрической энергии (потребляемой мощности). Потребляемая мощность - это количество электроэнергии, расходуемое электрооборудованием за единицу времени своей работы. Чаще всего, «ватт-часы» и «киловатт-часы» применяются для обозначения потребляемой мощности бытовой электротехники, по которой её собственно и выбирают.

вольт-ампер и киловольт-ампер (ВА, кВА, VA, кVA) - Единицы измерения электрической мощности в системе СИ, эквивалентные ватт (Вт) и киловатт (кВт). Используются в качестве единиц измерения величины полной мощности переменного тока . Вольт-амперы и киловольт-амперы применяются при электротехнических расчётах в тех случаях, когда важно знать и оперировать именно электрическими понятиями. В этих единицах измерения можно обозначать электрическую мощность любого электроприбора переменного тока. Такое обозначение будет наиболее соответствовать требованиям электротехники, с точки зрения которой - все электроприборы переменного тока имеют активную и реактивную составляющие, поэтому общая электрическая мощность такого прибора должна определяться суммой её частей. Как правило, в «вольт-амперах» и кратным им единицам измеряют и обозначают мощность трансформаторов, дросселей и других, чисто электрических преобразователей.

Выбор единиц измерения в каждом случае происходит индивидуально, на усмотрение производителя. Поэтому, можно встретить от разных производителей, мощность которых указана в киловаттах (кВт, kW), в киловатт-часах (кВт⋅ч, kW⋅h) или в вольт-амперах (ВА, VA). И первое, и второе, и третье - не будет ошибкой. В первом случае производитель указал тепловую мощность (как нагревательного агрегата), во втором - потребляемую электрическую мощность (как электропотребителя), в третьем - полную электрическую мощность (как электроприбора).

Поскольку бытовое электрооборудование достаточно маломощное, чтобы учитывать законы научной электротехники, то на бытовом уровне, все три цифры - практически совпадают

Учитывая вышеизложенное можно ответить на главный вопрос статьи

Киловатт и киловатт-час | Какая разница?

  • Самая большая разница заключается в том, что киловатт - это единица измерения мощности, а киловатт-час - это единица измерения электроэнергии. Путаница и неразбериха возникает на бытовом уровне, где понятия киловатт и киловатт-час отождествляются с измерением производимой и потребляемой мощности бытового электроприбора.
  • На уровне бытового прибора-электропреобразователя - разница только в разделении понятий выдаваемой и потребляемой энергии. В киловаттах измеряется выдаваемая тепловая или механическая мощность электроагрегата. В киловатт-часах измеряется потребляемая электрическая мощность электроагрегата. Для бытового электроприбора цифры вырабатываемой (механической или тепловой) и потребляемой (электрической) энергии практически совпадают. Поэтому, в быту нет никакой разницы, в каких понятиях выражать и в каких единицах измерять мощность электроприборов.
  • Связывание единиц измерения киловатт и киловатт-час применимо только для случаев прямого и обратного преобразования электрической энергии в механическую, тепловую и т.д.
  • Совершенно недопустимо применять единицу измерения «киловатт-час» в случае отсутствия процесса преобразования электроэнергии. Например, в «киловатт-час» нельзя измерять потребляемую мощность дровяного отопительного котла, но можно измерять потребляемую мощность электрического отопительного котла. Или, например, в «киловатт-час» нельзя измерять потребляемую мощность бензинового двигателя, но можно измерять потребляемую мощность электромотора
  • В случае прямого или обратного преобразования электрической энергии в механическую или тепловую, увязать киловатт-час с другими единицами измерения энергии можно при помощи онлайн-калькулятора сайта tehnopost.kiev.ua:

- Вольт (часто обозначается просто V) - это величина напряжения, которое толкает ток по цепи. В Европе ток, снабжающий домашние строения, обычно имеет напряжение в 240 вольт, хотя напряжение может варьировать до 14 вольт выше или ниже этой величины.

- Ампер (амп. или А, для сокращения) - это величина, которая используется для измерения силы тока, т.е. количества электрических заряженных частиц, называемых электронами, которые проходят через данную точку цепи каждую секунду. Биллионы электронов необходимы, чтобы получить один ампер. Величина, выраженная в амперах, определяется частично напряжением и частично сопротивлением.

- Ом - величина, служащая для измерения сопротивления. Она названа в честь немецкого физика 19 века Георга Симона Ома, который установил закон, гласящий, что сила тока, проходящего через проводник, обратно пропорциональна сопротивлению. Этот закон можно выразить уравнением: Вольты/Омы = Амперы. Следовательно, если вам известны две из названных величин, вы можете вычислить и третью.

- Ватт (W) - это величина энергии, показывающая, какое количество тока в приборе потребляется в любой момент. Соотношение между вольтами, амперами и ваттами выражено другим уравнением, которое поможет вам сделать любые расчеты. Они вам могут понадобиться для вычислений в данной книге:

Вольты х Амперы = Ватты

Принято пользоваться киловаттом (kW) как единицей энергии для крупных вычислений. Один киловатт равен одной тысяче ваттов.

- Киловатт-час - это величина для измерения полного количества потребляемой энергии. Например, если вы из расходуете 1 kW энергии за 1 час, это будет отражено на счетчике, и это значение израсходованной электроэнергии будет включено в вашу книгу расчета за электричество.

5 Единицы измерения тепловой энергии

Значение потребленной тепловой энергии (количества теплоты ) может выводиться измерения – Гкал, ГДж, МВтч, кВтч. тепловая энергия может передаваться потребителю с помощью двух видов теплоносителей: горячая вода или водяной пар.

Тепловая энергия может быть измерена в виде:

теплоты (количество теплоты), которая является характеристикой процесса теплообмена и определяется количеством энергии, получаемым (отдаваемым) телом в процессе теплообмена; в международной системе единиц (СИ) измеряется в джоулях (Дж), устаревшая единица - калория (1 кал = 4,18 Дж)).

энтальпии теплоносителя , которая является термодинамическим потенциалом (или функцией состояния) и определяется массой, температурой и давлением теплоносителя, в международной системе единиц (СИ) измеряется в калориях

Энтальпию теплоносителя, используют в качестве меры (количественной характеристики) тепловой энергии. Технологические особенности тепловой энергии предопределяют своеобразие его отпуска и приемки и, как следствие, порядок учета тепловой энергии, который зависит, во-первых, от вида теплоносителя, с помощью которого передается тепловая энергия; во-вторых, от системы теплоснабжения, подразделяющейся на открытые водяные (или паровые) и закрытые.

Измерение тепловой энергии и ее учет не являются тождественными понятиями, поскольку измерение есть нахождение значения физической величины опытным путем при помощи средств измерения, а учет тепловой энергии - использование результатов измерения.

Международная система единиц подскажет любому человеку, в чём измеряется электроэнергия. Такая информация нужна для того, чтобы правильно и безопасно использовать в домашних условиях электрические бытовые приборы.

Единицы измерения напряжения

Напряжение измеряется в вольтах. Чтобы снабдить электроэнергией частные дома используется однофазная сеть с напряжением 220 Вольт.

Но, существует также и трёхфазная сеть, для которой напряжение равно 380 Вольт. В 1000 Вольтах состоит 1 киловольт. Согласно этому показателю, напряжение 220 и 380 Вольт равно 0,22 и 0,4 киловольт.

Измерение силы тока

Сила тока представляет собой потребляемую нагрузку, которая возникает во время работы бытовых приборов или оборудования. Её измеряют в амперах.

Измерение сопротивления

Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.

Человеческое тело имеет сопротивление от двух до десяти килоОм.

Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.

Измерение мощности

Количество электроэнергии, которую потребляют приборы за определённую единицу времени, называют мощностью. Она измеряется в Ваттах, киловаттах, мегаваттах, гигаваттах.

Измерение электроэнергии по счётчику

Для определения потребления электроэнергии в квартире или доме используют такое измерение как 1 киловатт за 60 минут. Когда проводится запись потребления электричества важно мощность умножить на время, чтобы правильно измерить электроэнергию.

Теперь вам известно, в чём измеряется электричество. Теперь без труда сможете определить мощность прибора и какое напряжение в розетке, чтобы не вывести его из строя. Благодаря описанным показателям можно избежать серьёзных и опасных ошибок в использовании электрических приборов.

Термин электроэнергия (электрическая энергия, электричество) является физическим и широко распространенным термином. В быту и промышленности он означает процесс производства (выработки), передачи и распределения электроэнергии, которая может быть получена 2 способами:

  • от энергопоставляющей компании;
  • с помощью , называемых генераторами.

Единицей измерения потребления электроэнергии является кВт-час. Электричество обладает рядом положительных свойств и благодаря им она широко применяется во всех отраслях нашего хозяйства и, конечно, в быту. К ним относят:

  1. простоту выработки;
  2. возможность передачи на огромные расстояния;
  3. способность преобразовываться в другие виды энергии;
  4. легко и просто распределяться между разными потребителями.

В настоящее время тяжело представить производство, сельское хозяйство и быт людей без использования электричества. С его помощью освещаются здания, помещения и территории, работает различная техника , оборудование и устройства, передвигается электротранспорт, обогреваются дома и производственные площади, осуществляется связь и многое другое.

Генерация (преобразование различных видов энергии в электрическую) электроэнергии происходит с помощью тепло-, гидро-, ядерной и альтернативной энергетики . Вырабатывается электроэнергия на специальных электростанциях, функционирование и принцип действия которых определяется их названием.

Активная и реактивная электроэнергия

Передача электроэнергии осуществляется по линиям воздушным или кабельным. Такие линии называют электрическими сетями . Расчет потребляемой электроэнергии с абонентами производится с учетом полной мощности тока, проходящего через электрическую цепь. Затраты полной мощности делят на 2 показателя энергии:

  • активная;
  • реактивная.

Активная энергия, которая является составляющей выработанной полной мощности (измеряется в кВ·А), совершает полезную работу и у большинства электроприборов в расчетах она совпадает с ней. Например, если в паспорте на какое-то устройство (утюг, электропечь, обогреватель и т.д.) указана активная мощность в кВт, то и полная мощность будет такой же, только уже в кВ·А.

В электрических цепях с реактивными элементами (емкостной или индуктивной нагрузкой) часть полной мощности расходуется не на совершение полезной роботы . Это и будет реактивная электроэнергия. Такое понятие характерно для цепей переменного тока. Здесь присутствует такое явление, как несоответствие фазы напряжения фазе тока. Происходит или ее опережение (при емкостной нагрузке) или отставание (при индуктивной нагрузке). Потери происходят из-за нагревания. Многие бытовые и промышленные приборы и оборудование имеют реактивную составляющую (электродвигатели, переносной электроинструмент, бытовая техника и т.д.). Тогда при расчете за потребленную электроэнергию вводят поправочный коэффициент мощности. Обозначается он как cos fi и его величина лежит обычно в пределах от 0,6 до 0,9 (указывается в паспортных данных на конкретное электроустройство). Например, если в паспорте переносного инструмента указана мощность в 0,8 кВт и значение cos = 0,8, то в этом случае полная потребляемая мощность составит - 1 кВт(0,8/0,8). Считается негативным явлением и при уменьшении показателя cos снижается полезная мощность.

Обратите внимание! При отсутствии или потере паспорта на конкретное электроустройство для вычисления полной мощности применяют коэффициент cos = 0,7.

Чем выше значение cos , тем меньше потери активной электроэнергии и, конечно, такое электричество будет стоить дешевле. Для повышения этого коэффициента используются различные компенсирующие устройства. Это могут быть генераторы опережающего тока, батареи конденсаторов и др. устройства.

Помимо передачи по проводникам существует еще беспроводная передача электроэнергии. В данный момент существует технология беспроводной зарядки мобильных телефонов и некоторых , электромобилей и т.п. Они имеют ограничения по дальности и малую эффективность передачи энергии, поэтому говорить об их широком применении не приходится.

Ватт (обозначение: Вт , W ) - в системе СИ единица измерения мощности.

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Из-за схожих названий, киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к электроприборам. Однако эти две единицы измерения относятся к разным физическим величинам . В ваттах и, следовательно, киловаттах измеряется мощность, то есть количество энергии, потребляемое прибором за единицу времени. Ватт-час и киловатт-час являются единицами измерения энергии, то есть ими определяется не характеристика прибора, а количество работы, выполненной этим прибором.

Эти две величины связаны следующим образом. Если лампочка мощностью в 100 Вт работала на протяжении 1 часа, её работа потребовала 100 Вт·ч энергии, или 0,1 кВт·ч. 40-ваттная лампочка потребит такое же количество энергии за 2,5 часа. Мощность электростанции измеряется в мегаваттах, но количество проданной электроэнергии будет измеряться в киловатт-часах (мегаватт-часах).

Следовательно Килова́тт-час (кВт·ч) - внесистемная единица измеренияработы или количества произведенной энергии. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Интересные факты

С помощью 1 кВт·ч можно добыть 75 кгугля, 35 кгнефти, испечь 88 буханок хлеба, выткать 10 метровситца, вспахать 2,5 соткиземли

Каждый человек наделен своей энергетикой. Она бывает врожденная и полученная в течение жизни. Есть слабая энергетика, есть энергетика сильная. От нее, по мнению специалистов в области эзотерики, зависят личностное развитие и успех человека в жизни. Как же определить свое энергетическое поле?

Определенных способов проверки человека на его энергетическую мощь нет. Энергетику нельзя измерить приборами. Но ее можно почувствовать. Как правило, человек активный, целеустремленный и деятельный обладает большим запасом жизненных сил. А тот, кто постоянно жалуется на нехватку энергии, и есть человек с низким уровнем энергетики.

Энергетически сильный человек, как правило, всегда бывает в хорошем настроении. Он умеет управлять своими эмоциями, знает, на что способен и смело идет к цели. Его не пугают трудности, так как он чувствует в себе силу, которая поможет в сложный период.

Люди с сильной энергетикой более удачливы по жизни. Они бодры и позитивны. Их настрой и крепкое здоровье позволяет легко добиваться своих целей. Энергичные люди могут манипулировать окружающими, отстоять свою точку зрения и завоевать внимание к своей персоне.

Однако те, у кого высокий энергетический потенциал, должны уметь контролировать свою силу. Энергию лучше направлять во благо себе и окружающим. Если у вас сильная энергетика, то есть вероятность того, что вы можете сглазить человека и нанести вред его биополю.

Энергетически слабый человек часто болеет. Если у него и возникают хорошие идеи, то он не спешит их реализовывать. Люди со слабой энергетикой быстро устают. Их легко обидеть или оказать на них влияние.

Уровень энергетики более точно можно определить по сновидениям. Что чаще всего вам снится?

Если во сне вы часто в идите реки, леса, заросли - то это признак переизбытка энергии. Также об этом может свидетельствовать музыка во сне или ремень, который сильно стягивает вашу талию. В этом случае с энергетикой у все в порядке. Правда, случается, что чрезмерная энергичность не доводит до добра. Если ваши силы направлены во благо, от них будет реальная польза. Но если вы растрачиваете ее по пустякам, то ничего хорошего от своей внутренней силы вы не получите.

Если вам постоянно снятся руины, старые дома, пропасть, пустота, голод, жажда, ссоры, драки, узкие дороги и коридоры, то вы испытываете недостаток жизненной силы. Это знак того, что срочно нужно изменить свою жизнь и восстановить энергию .

Не спешите отчаиваться, если вдруг поняли, что энергетически вы не сильны. Есть мнение, что человеческая энергетика постоянно меняется . Она может быть врожденной, наследственной (ее уровень это зависит от многих факторов, таких как место рождение, энергетика рождения, обстоятельства рождения и прочее) и приобретенной.

Приобретенная энергетика может меняться в зависимости от того, какой образ жизни ведет человек, чем он занимается, где живет и с кем общается. Исходя из этого, можно легко повысить свой энергетический уровень. Для этого существует много способов.

  • Во-первых, необходимо полноценно питаться и наладить режим дня.
  • Во-вторых, необходимо почаще оставаться наедине с собой и своими мыслями, чтобы лучше понять себя и свои желания.
  • В-третьих, нужно отдавать предпочтение тому делу, которое приносить моральное удовлетворение.
  • В-четвертых, следует больше общаться с людьми, которые настраивают вас на позитивные эмоции.

Зная свой энергетический потенциал, вы можете самостоятельно его усилить (если он слабый), либо направить в нужное русло для достижения целей. Обладая внутренней силой, вы можете добиться всего, чего захотите. Главное, постоянно работать над энергетикой, не давать ей сбоя и уметь контролировать ее, когда это необходимо.

23.10.2013 16:31

День большинства людей начинает довольно рано – кто встает на учебу, кто на работу. Некоторым...

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения - через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения . Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые - в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения - последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами I в1 и I в2 , индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) - параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 - напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,- буквами Г.

.
Знахарки давали осиновую лучинку человеку. За неимением такой можно заменить ее на обыкновенную спичку.

Необходимо ее зажечь и подождать, пока она сгорит до конца. Чтобы не обжечь себе пальцы, можно спичку перехватить: взяться за обгоревший конец, либо сжечь ее в два этапа - это совсем неважно. Важно только, чтобы держал данную спичку тот человек, чью следует проверить.
Почему? Потому как именно огонь (а точнее, так называемая, плазма) вступает в контакт с существующими энергетическими . А уже в результате данного взаимодействия изменяются древесины, находящейся в центре пламени.

После того, как спичка полностью сгорит, ее нужно бросить в стакан с простой водой. Если по истечении двух или трех минут она утонет, значит, у испытуемого человека энергетическое поле нарушено. Каждый может возразить: спичка естественно утонет, ведь уголь является тяжелее воды. Да, это правильное утверждение, но только со стороны . Все дело в том, что при отдельных (когда в руках держит спичку человек с достаточно сильным энергетическим полем) не осиновый уголь, так как перестает впитывать воду. Поэтому для понимания эксперимента лучше взять все-таки осиновую лучинку.
Если она утонула, не стоит расстраиваться. Может это просто присутствуют незначительные нарушения в энергетике (например, человек заразился чужими отрицательными эмоциями). Но если данная утонувшая лучинка подтверждает какие-то давние опасения, тогда нужно срочно принимать меры.

Все существующее в мире – люди, животные, камни, деревья имеют свое энергетическое поле или, как его еще называют, биоэнергетику. По сути, взаимодействие человека с окружающим миром заключается в постоянном обмене энергией и информацией с другими объектами. Человек, который способен делать это лучше остальных, живет более гармоничной, полноценной жизнью.

Инструкция

На энергетическое поле человека влияет множество факторов. Важно все – в каких его зачали родители, не было ли это сделано в неблагоприятном месте, в какое время, день недели, месяц и год случилось это событие. Если ребенок был зачат во время солнечного или лунного затмения, то его энергетическое поле изначально будет нарушено, ведь во время затмений изменяется энергетическое поле самой Земли.

Зависит энергетика человека и от солнечной активности. У людей, рожденных во время активного Солнца, энергетика более мощная, более устойчивая к воздействию внешней среды. Люди, рожденные с 10 по 21 , обладают энергетикой, способной притягивать приключения. Поэтому для таких людей важно постоянно заниматься очисткой своей , ходить босиком, заниматься физическим трудом. Дети, родившиеся , обладают более мощной энергетикой и более крепким здоровьем, чем дети, родившиеся при аналогичных условиях, но в другие месяцы.

В норме биополе человека имеет яйцеобразную форму и выходит за пределы физического тела на 40 сантиметров – полтора метра. Однако вы и сами не раз могли почувствовать изменения в человека – когда в помещение входит новый гость, и складывается впечатление, что он занимает слишком много места и потеснил всех присутствующих. Напротив же, человек, весь вечер просидевший незамеченным, обладает слабой энергетикой.

Благодаря своей интуиции вы прекрасно сможете определить человека и понять, подходит ли он вам. Для этого вам необходимо лишь прислушаться к своим ощущениям. Не замечаете ли вы приступов после общения с человеком? Нет ли у вас обострения хронических болезней при длительном с ним? Чувствуете ли вы спокойствие и умиротворение, находясь с человеком на близком расстоянии? Не ругаетесь ли на пустом месте? Если на все вопросы вы ответили «нет», значит, энергетическое поле этого человека подходит вам.

Видео по теме

Энергетика человека – сложная, уравновешенная система, которая практически не связана с биохимическими процессами, происходящими в организме. Причин для истощения человеческой энергетики масса, важно понимать, какие из них являются ключевыми.

Почему у меня слабое энергетическое поле?

Энергетическое зависит от психологического состояния. Если человек – жизнелюб, его энергетическое поле будет намного плотнее, чем у постоянно недовольных жизнью людей. Так что, если вы постоянно жалуетесь на жизнь, ищете ее темные стороны, раздражаетесь по пустякам, это может привести к существенному ослаблению вашей энергетики. Нужно отметить, что эта связь работает в обе стороны. Если вдруг обычно довольный жизнью человек начинает вести себя, как ипохондрик, скорее всего это означает, что с его полем что-то произошло.
Если силы вас покинули, заставьте себя отдохнуть. Лучше всего помогает сон, так что используйте успокаивающие чаи или снотворное, чтобы убедить свой организм как следует выспаться.

Что вредит энергетике

Человеческая энергия – лакомый кусочек для энергетических вампиров. Они делятся на два вида. Первые провоцируют людей на скандал, фактически, как только человек выходит из себя в присутствии таких людей, он лишается львиной доли своей энергии. Второй тип – нытики. Вечно недовольные люди, которые ищут и требуют поддержки и сочувствия по любому поводу, могут отнимать энергию не хуже скандалистов. Если вдруг вы понимаете, что уровень вашей энергетики сильно просел, вспомните, вдруг вы выходили из себя за последнее время или занимались бесплодными утешениями. Если подобный инцидент присутствовал в вашей жизни, сведите к минимуму общение с людьми, принимавшими в нем участие. Понаблюдайте за своим состоянием в течение некоторого времени.

Зачастую самыми опасными энергетическими вампирами являются ближайшие родственники. Как правило, они тянут на себя энергию не со зла. В этой ситуации просто нужно постараться держать себя в руках, не выходить из себя в их присутствии и следить за эмоциональными реакциями.

Займитесь любимым делом. Это очень хорошо восстанавливает уровень энергии. Во время занятий чем-то приятным и интересным люди забывают об усталости и времени.

Еще одна частая причина потери энергии – ожидание какого-то очень важного события. Очень часто важнейшие события в нашей жизни «стягивают» в будущее огромное количество нашей энергии. Особенно это касается ситуаций, которые только могут произойти. При этом все мысли концентрируются только на таких будущих возможностях, а значит, и вся энергия тоже утекает туда же. Постарайтесь отключиться от подобного события, если оно есть в вашем будущем. Подобное энергетическое истощение не приведет ни к чему хорошему.