Хвойная иголка волокна кожица строение. Анатомическое строение листа хвойных. Подробности для любознательных

К атегория: Анатомия растений

Листья хвойных растений

Листья многих хвойных растений живут в течение нескольких лет. Они приспособлены к недостаточному водоснабжению, особенно в зимнее время, и резким колебаниям летних и зимних температур. Поэтому листья большинства хвойных имеют ксероморфную структуру: они жесткие, мелкие, с малой испаряющей поверхностью. С анатомическим строением листьев хвойных можно ознакомиться на примере сосны.

Строение листа (хвои) сосны обыкновенной (Pinus sylvestris L.)

У сосны обыкновенной жесткие игольчатые листья (хвоя) располагаются парами на укороченных побегах.

Хвою фиксируют спиртом, который частично растворяет содержащуюся в них смолу. Чтобы легче получить поперечные срезы, пары хвоинок зажимают между кусочками сердцевины бузины или втыкают в сердцевину. Тонкие срезы обрабатывают раствором флороглюцина и соляной кислотой.

Рис. 1. Поперечный разрез хвои сосны (схема): эп - эпидермис, у - устьица, г - гиподерма, с. к. - смоляной канал, с. м. - складчатый мезофилл, энд - эндодерма, п. п. - проводящий пучок, т. т. - трансфузионная ткань, кс - ксилема, фл - флоэма, скл - склеренхима

Поперечный срез листа имеет полукруглые очертания (рис. 89). Снаружи расположен эпидермис с толстой кутикулой. Клетки эпидермиса почти квадратные. Наружные, боковые и внутренние стенки клеток сильно утолщены, у наиболее старых листьев они нередко одревесневают. От небольшой округлой внутренней полости к углам клетки отходят узкие щелевид-ные поровые каналы. Под эпидермисом находится гиподерма, состоящая из одного, а в углах - из двух-трех слоев волокон с утолщенными одревесневшими стенками.

Устьица расположены по всей поверхности листа. Их замыкающие клетки находятся на уровне гиподермы, под околоустьичными клетками. Околоустьичные клетки очень крупные, с сильно утолщенными наружными стенками. Стенки замыкающих и околоустьичных клеток в утолщенных местах одревесневают. Устьичная щель ведет в подустьичную воздушную полость, окруженную клетками мезофилла.

Рис. 2. Часть поперечного среза хвои сосны: эп - эпидермис, з. к. - замыкающая клетка, о. к. - околоустьичная клетка, пд. п - подустьичная полость, г - гиподерма, с. к. - смоляной канал, э. к.-эпителиальные клетки, скл - склеренхима, с. м. - складчатый мезофилл, энд - эндодерма с крахмальными зернами, к. т. п. - клетка транс-фузионной паренхимы с зернами крахмала, к. т. т. - клетка трансфузион-ной трахеиды с окаймленными порами, я - ядро, хл - хлоропласты

Мезофилл однородный, складчатый. Складки возникают вследствие врастания внутренних слоев оболочки в полость клетки, которая при этом приобретает лопастные очертания. За счет складок увеличивается поверхность постенного слоя цитоплазмы, содержащего хлоропласты. Клетки мезофилла соединены плотно, межклетники между ними очень малы.

В мезофилле непосредственно под гиподермой или несколько глубже расположены схизогенные смоляные каналы. Они проходят вдоль листа и заканчиваются слепо вблизи его верхушки. Снаружи смоляной канал имеет обкладку из толстостенных неодревеснев-ших волокон. Внутри он выстлан тонкостенными живыми клетками эпителия, выделяющими смолу.

Проводящая система представлена двумя коллатеральными закрытыми пучками, расположенными в центре хвои под углом один к другому. Ксилема, состоящая из трахеид с узкими полостями, обращена к плоской стороне листа, флоэма - к выпуклой. Таким образом, плоская сторона хвои представляет собой морфологически верхнюю, а выпуклая - морфологически нижнюю стороны листа.

Снизу между пучками находится тяж волокон с толстыми, слегка одревесневшими стенками. Проводящие пучки и примыкающие к ним механические элементы окружены трансфузионной тканью, состоящей из клеток двух типов. Возле ксилемы клетки несколько удлинены, содержимого в них нет, их одревесневшие стенки имеют окаймленные поры. Эти клетки называют трансфузионными трахеидами. Остальные клетки живые, паренхимные, тонкостенные. Они содержат смолистые вещества, нередко в них встречаются зерна крахмала. Трансфузионная ткань, по-видимому, участвует в перемещении веществ между проводящими пучками и мезофиллом.

Проводящие пучки вместе с окружающей их трансфузионной тканью отделены от мезофилла эндодермой, представляющей собой однорядный слой паренхимных клеток с пятнами Каспари на радиальных стенках.

Задание.
1. При малом увеличении микроскопа зарисовать схему строения листа, отметив эпидермис с устьицами, гиподерму, складчатый мезофилл, смоляные каналы, эндодерму, проводящие пучки, механические волокна и трансфузионную ткань.
2. При большом увеличении зарисовать участок хвои с эпидермисом, гиподермой, складчатым мезофиллом, смоляным каналом и эндодермой с пятнами Каспари на

Кроме сосны складчатый мезофилл и смоляные каналы встречаются у ели (виды Picea), кедра (виды Ced-rus), листья которых содержат по одному проводящему пучку.

Один проводящий пучок встречается и у так называемых пятихвойных сосен, например у сибирской (Pinus sibirica (Rupr.) Мауг.) и веймутовой (P. strobus L.), у которых укороченные побеги несут не по две хвоинки, как у обыкновенной сосны, а по пяти.

Лист тиса (Taxus baccata L.) более широкий, складчатого мезофилла в нем нет. На верхней стороне листа хлорофиллоносные клетки несколько вытянуты по вертикали и более узкие, чем на нижней стороне. Смоляной канал без механической обкладки расположен близ флоэмной части единственного проводящего пучка, с двух сторон от которого находится трансфузионная ткань.



- Листья хвойных растений

Строение листа (хвои) сосны обыкновенной (Pinus sylvestris L.)

У сосны обыкновенной жесткие игольчатые листья (хвоя) располагаются парами на укороченных побегах.

Хвою фиксируют спиртом, который частично растворяет содержащуюся в них смолу. Чтобы легче получить поперечные срезы, пары хвоинок зажимают между кусочками сердцевины бузины или втыкают в сердцевину. Тонкие срезы обрабатывают раствором флороглюцина и соляной кислотой.

Поперечный срез листа имеет полукруглые очертания (рис. 89). Снаружи расположен эпидермис с толстой кутикулой. Клетки эпидермиса почти квадратные. Наружные, боковые и внутренние стенки клеток сильно утолщены, у наиболее старых листьев они нередко одревесневают. От небольшой округлой внутренней полости к углам клетки отходят узкие щелевид-ные поровые каналы. Под эпидермисом находится гиподерма, состоящая из одного, а в углах - из двух-трех слоев волокон с утолщенными одревесневшими стенками.

Устьица расположены по всей поверхности листа. Их замыкающие клетки находятся на уровне гиподермы, под околоустьичными клетками. Околоустьичные клетки очень крупные, с сильно утолщенными наружными стенками. Стенки замыкающих и околоустьичных клеток в утолщенных местах одревесневают. Устьичная щель ведет в подустьичную воздушную полость, окруженную клетками мезофилла.

Мезофилл однородный, складчатый. Складки возникают вследствие врастания внутренних слоев оболочки в полость клетки, которая при этом приобретает лопастные очертания. За счет складок увеличивается поверхность постенного слоя цитоплазмы, содержащего хлоропласты. Клетки мезофилла соединены плотно, межклетники между ними очень малы.

В мезофилле непосредственно под гиподермой или несколько глубже расположены схизогенные смоляные каналы. Они проходят вдоль листа и заканчиваются слепо вблизи его верхушки. Снаружи смоляной канал имеет обкладку из толстостенных неодревеснев-ших волокон. Внутри он выстлан тонкостенными живыми клетками эпителия, выделяющими смолу.



Проводящая система представлена двумя коллатеральными закрытыми пучками, расположенными в центре хвои под углом один к другому. Ксилема, состоящая из трахеид с узкими полостями, обращена к плоской стороне листа, флоэма - к выпуклой. Таким образом, плоская сторона хвои представляет собой морфологически верхнюю, а выпуклая - морфологически нижнюю стороны листа.

Снизу между пучками находится тяж волокон с толстыми, слегка одревесневшими стенками. Проводящие пучки и примыкающие к ним механические элементы окружены трансфузионной тканью, состоящей из клеток двух типов. Возле ксилемы клетки несколько удлинены, содержимого в них нет, их одревесневшие стенки имеют окаймленные поры. Эти клетки называют трансфузионными трахеидами. Остальные клетки живые, паренхимные, тонкостенные. Они содержат смолистые вещества, нередко в них встречаются зерна крахмала. Трансфузионная ткань, по-видимому, участвует в перемещении веществ между проводящими пучками и мезофиллом.

Проводящие пучки вместе с окружающей их трансфузионной тканью отделены от мезофилла эндодермой, представляющей собой однорядный слой паренхимных клеток с пятнами Каспари на радиальных стенках.

Метаморфозы вегетативных органов корень лист побег

Корень

Микроскопическое строение корня . На продольном разрезе молодого растущего корня можно увидеть: зону деления, зону роста, зону всасывания и зону проведения. Верхушку корня, где находится конус нарастания, покрывает корневой чехлик.
Функция корня и корневые системы . Основные функции корня: закрепление растения в почве, активное поглощение из нее воды и минеральных веществ, синтез важных органических веществ, а также запасание веществ.
Совокупность всех корней одного растения образует корневую систему.
Различают два типа корневых систем - стержневую, в которой отчетливо виден главный корень, и мочковатую, состоящую из придаточных корней.
Видоизменения корня . В видоизмененных корнях накапливаются запасные питательные вещества - крахмал, различные сахара и другие вещества. Утолщенные главные корни моркови, свеклы, репы называются корнеплодами. Утолщаются и придаточные корни, как, например, у георгина. Они называются корневыми клубнями.

Побег

В ходе эволюции растений при переходе их к наземному существованию сформировался вегетативный орган - побег, выполняющий функции фотосинтеза и образования репродуктивных структур (спорангиев, шишек, цветков и др.). Побег - это стебель, несущий листья и почки.
Развитие побега из почек . Надземная часть растения обычно состоит из системы ветвящихся побегов. Стебель - это ось побега, он связывает корни и листья. Побеги могут быть однолетними и многолетними. Стебли однолетних растений обычно не одревесневают, многолетних - одревесневают. Побег развивается из почечки зародыша семени. Почка - это зачаточный побег, состоящий из укороченного стебля с зачаточными листьями. Она покрыта чешуями, плотно прилегающими друг к другу, которые защищают ее от неблагоприятных воздействий.
Различают почки вегетативные и генеративные (цветочные). Из цветочных почек образуются цветки. Из вегетативных - листья и побеги. Верхушечная почка - это верхушка стебля. Самый кончик стебля называется конусом нарастания. Из верхушечной почки вырастает главный побег, а из боковых - боковые побеги.
Растения могут образовывать почки на любой части стебля, на корнях и даже на листьях.
Ветвление стебля . В процессе эволюции высших растений выработались следующие основные способы ветвления: дихотомическое, или вильчатое, моноподиальное, симподиальное.
Дихотомическое ветвление . От верхушки отходят два побега, каждый из которых, в свою очередь, дает еще два побега, и т. д. (плауны, некоторые папоротниковидные).
Моноподиальное ветвление . Главная ось - моноподий имеет как бы неограниченный верхушечный рост. От моноподия отходят боковые оси второго порядка, дающие оси третьего порядка, и т. д. (многие голосеменные).
Симподиальное ветвление . Один или несколько боковых побегов, образующихся на главном побеге, быстро обгоняют его рост (груша, липа, кустарники).
Формы стебля . Формы побегов разнообразны: прямостоячие, стелющиеся, вьющиеся, лазающие. Различают травянистые и деревянистые стебли, формирующие соответствующие жизненные формы растений (однолетние и многолетние травы, деревья и кустарники).
Видоизменения стебля . Стебель может выполнять функцию запаса питательных веществ. При этом он видоизменяется, образуя корневища, клубни, луковицы и др. Корневище - это сильно измененный подземный побег, у которого развиваются чешуевидные листья и почки (этим он отличается от корня). На нем образуются придаточные корни. Луковица состоит из сильно укороченного стебля - донца, от которого книзу отходит пучок придаточных корней, а укороченный стебель окружен измененными толстыми листьями, которые и образуют мякоть луковицы. Корневище, клубень и луковица служат органами вегетативного размножения.

Лист

Лист осуществляет три важные функции : фотосинтез, испарение воды и газообмен.
В листе выделяют: листовую пластинку и черешок. Листья, не имеющие черешка, называются сидячими.
По форме листовой пластинки различают листья округлые, ланцетовидные, сердцевидные, почковидные, стреловидные и т. д.
Листья подразделяют на простые и сложные. Простой лист состоит из черешка и листовой пластинки; сложные листья имеют несколько листовых пластинок, расположенных на одном черешке. Простые листья могут быть цельными и лопастными. Цельные листья имеют многие деревья (береза, липа). У лопастных листьев пластинка имеет надрезы, которые разделяют ее на лопасти (клен, дуб). Сложные листья бывают пальчатосложными, тройчатосложными и перистосложными. У последних листовые пластинки прикрепляются по всей длине черешка. Они бывают двух видов: парноперистые и непарноперистые. Парноперистые заканчиваются парой листовых пластинок (горох); непарноперистые - одним листком (рябина, ясень, малина).
Простые и сложные листья расположены на стеблях в определенном порядке. Очередное распололожение характеризуется тем, что листья сидят на стебле по одному, чередуясь друг с другом (береза, яблоня, роза). При супротивном расположении листья размещаются по два друг против друга, при мутовчатом прикрепляются к стеблю пучками - мутовками.

Строение листа . Листовая пластинка покрыта кожицей. На нижней стороне листа расположены устьичные клетки, ограничивающие устьице. Под кожицей находятся клетки мякоти листа - столбчатая и губчатая ткани. Ткань листа представлена также системой проводящих пучков - жилками. По ним к листьям доставляется вода, минеральные элементы и вещества, образуемые в корнях. Из листьев в стебель к почкам и корням поступают вещества, образовавшиеся в процессе фотосинтеза. Различают сетчатое (чаще всего встречается у двудольных), параллельное (у однодольных злаков, осок) и дуговое (например, у ландыша) жилкование.
Испарение воды листьями . Испарение способствует передвижению воды и растворенных в ней веществ от корней к листьям. Интенсивность испарения регулируется устьицами. Свет способствует открыванию устьиц, в темноте они закрыты. Устьица закрываются также в середине дня, в сильную жару.
Видоизменения листьев . В процессе эволюции листья приобрели дополнительные функции, в связи с чем изменился их внешний вид. Например, у кактуса, барбариса листья превратились в колючки. У гороха листья видоизменились в усики, посредством которых растение прикрепляется к опоре. В чешуйчатых листьях луковицы (например, репчатого лука) тонкие чешуи играют защитную роль, а сочные чешуи, богатые питательными веществами, служат органами запаса.

Сердцевина хвойных пород (сосны) имеет округлую форму с неправильными лучевыми выростами. Она состоит из довольно крупных паренхимных клеток, имеющих форму многогранников с тонкими одревесневшими стенками; у старых деревьев клетки эти мертвы, полости их заполнены воздухом. Сердцевину окружают образовавшиеся в первый год роста элементы, составляющие первичную древесину. Сердцевина вместе с прилегающей к ней первичной древесиной называется сердцевинной трубкой. Древесина хвойных пород отличается сравнительной простотой и правильностью строения. В состав ее входят всего два основных элемента: проводящие и механические функции здесь выполняют трахеиды, а запасающие - паренхимные клетки. На рис. 16 показана объемная схема микроскопического строения древесины типичной хвойной породы - сосны.

Трахеиды - основной элемент древесины хвойных пород. Они занимают свыше 90% общего объема древесины. Трахеиды имеют форму сильно вытянутых в длину веретенообразных клеток (волокон) с утолщенными одревесневшими стенками и кососрезанными концами. На поперечном разрезе трахеиды расположены правильными радиальными рядами. Форма трахеид на поперечном разрезе близка к прямоугольной. Трахеиды - мертвые элементы; в стволе растущего дерева только вновь образующийся (последний) годичный слой содержит живые трахеиды, отмирание которых начинается еще весной, постепенно увеличивается к осени, а к концу зимы все трахеиды последнего годичного слоя отмирают.

Рис. 16. Схема микроскопического строения древесины сосны: 1 - годичный слой; 2 - сердцевинный луч; 3 - вертикальный смоляной ход; 4 - ранние трахеиды; 5 - поздние трахеиды; 6 - окаймленная пора; 7 - лучевые трахеиды; 8 - многорядный луч с горизонтальным смоляным ходом.

В пределах одного годичного слоя трахеиды ранней и поздней зоны сильно отличаются друг от друга. Ранние трахеиды. образующиеся в начале вегетационного периода, выполняют проводящие функции (проводят воду), поэтому имеют широкую внутреннюю полость и тонкие стенки с многочисленными порами. Размер ранних трахеид по радиальному направлению больше, чем по тангенциальному; концы трахеид слегка закруглены. Поздние трахеиды, отложенные камбием во второй половине вегетационного периода,- механические элементы, поэтому стенки их сильно утолщены из-за резкого уменьшения внутренней полости; концы поздних трахеид сильно заострены (рис. 17).
Рис. 17. Трахеиды и сердцевинные лучи: а-ранняя древесина; б - поздняя; трахеиды сосны сверху; сердцевинные лучи на радиальном разрезе под микроскопом (снизу); слева - сосны; справа - пихты; 1 - лучевые трахеиды с мелкими окаймленными порами; 2 - паренхимные клетки с простыми порами (крупными в сосне и мелкими в пихте).Между типично ранними трахеидами в начале годичного слоя и типично поздними трахеидами в конце слоя находится несколько рядов трахеид, которые по толщине оболочек и размерам полости занимают промежуточное положение между ранними и поздними трахеидами. Такой слой промежуточных трахеид наблюдали в древесине сосны и лиственницы. Ширина ранних трахеид сосны по радиальному направлению составляет в среднем 40 μ, поздних - 20 μ; толщина стенок ранних трахеид 2 μ, поздних - от 3,5 до 7,5 μ. Ширина ранних трахеид ели из Архангельской области в среднем 45 μ, поздних - 22 μ; толщина стенок ранних трахеид около 3 μ, поздних - около 5 μ. Длина трахеид сосны колеблется от 2,1 до 3,7 мм, трахеид ели - от 2,6 до 5 мм; при этом длина поздних трахеид примерно на 10% больше ранних. У большинства наших хвойных пород стенки трахеид гладкие и лишь у тисса они имеют хорошо заметные спиральные утолщения.Толщина оболочек трахеид сосны при переходе в позднюю зону сначала увеличивается, достигая максимума, а затем около границы годичного слоя уменьшается. Таким образом, самые толстостенные трахеиды находятся не у границы годичных слоев, а в его третьей четверти. Характерная особенность трахеид - окаймленные поры, расположенные преимущественно на радиальных стенках у концов трахеид, которыми каждая трахеида вклинивается между соседними, образуя плотное соединение. Типичные окаймленные поры присутствуют на стенках ранних трахеид; поздние трахеиды имеют поры меньших размеров и в значительно меньшем количестве. На одной ранней трахеиде сосны находится в среднем 70 пор, на одной поздней - всего 17 пор; на трахеидах ели соответственно 90 и 25, на трахепдах лиственницы европейской - 90 и 8 пор. Диаметр окаймленных пор у разных пород колеблется от 8 до 31 μ, диаметр отверстия - от 4 до 8 μ. Мембрана окаймленных пор в трахеидах хвойных пород имеет в периферической неутолщенной части мелкие сквозные перфорации овальной или круглой формы, облегчающие сообщение между трахеидами.При отклонении мембраны в ту или иную сторону торус закрывает отверстие поры, вследствие чего проход воды через нее сильно затрудняется. В ядровой и спелой древесине хвойных пород окаймленные поры по существу выключены из действия и поэтому такая древесина становится труднопроницаемой для воды.

Общее количество окаймленных пор в ранней древесине ели имеет тенденцию к увеличению в направлении от коры к сердцевине, а у пихты - наоборот. Однако количество закрытых пор в древесине обеих пород возрастает в направлении от коры к сердцевине, причем наиболее резкое, скачкообразное увеличение количества их наблюдается при переходе заболони в спелую древесину. Вместе с тем замечено, что в поздних трахеидах ядра сосны закрытых пор значительно меньше, чем в ранних (по некоторым данным, в 8 раз), благодаря чему поздняя зона годичных слоев пропитывается антисептиками лучше, чем ранняя. Размеры трахеид и толщина их стенок в одном и том же стволе увеличивается в направлении от сердцевины к коре до определенного возраста (разного у различных пород), после чего остаются неизменными или несколько убывают. Диаметр ранних трахеид сосны достигает максимума в 40 лет и в дальнейшем уже почти не изменяется.

По высоте ствола у спелых деревьев длина и ширина трахеид в одном и том же годичном слое постепенно увеличивается от основания ствола до кроны, а в пределах кроны быстро уменьшаются по мере приближения к вершине; толщина стенок трахеид, наоборот, сперва уменьшается, а в области кроны снова несколько увеличивается. В ветвях трахеиды имеют меньшие размеры, чем в стволе; ветви, которые отходят от ствола в том месте, где трахеиды длиннее, имеют также более длинные трахеиды. Условия произрастания оказывают влияние на размеры трахеид сосны Брянской области, оказалось, что наиболее крупные ранние трахеиды и наиболее толстостенные поздние трахеиды наблюдаются при средних, оптимальных для сосны, условиях произрастания (I-II бонитет); улучшение (бонитет I а) и ухудшение (бонитет IV) условий произрастания сопровождаются уменьшением размеров ранних трахеид и толщины стенок поздних трахеид. Условия произрастания оказывают влияние главным образом на толщину стенок поздних трахеид. а толщина стенок ранних трахеид почти не изменяется.

Паренхимные клетки в древесине всех хвойных пород составляют сердцевинные лучи, смоляные ходы (у некоторых хвойных) и у отдельных пород древесную паренхиму. Сердцевинные лучи хвойных пород очень узкие (однорядные на поперечном разрезе), по высоте состоят из нескольких рядов клеток. У сосны, кедра, лиственницы и ели сердцевинные лучи состоят из двух видов клеток: верхний и нижний ряды по высоте луча представлены горизонтальными (или лучевыми) трахеидами с мелкими окаймленными порами и характерным утолщением стенок у некоторых хвойных; внутренние, т. е. средние по высоте, ряды состоят из паренхимных клеток с простыми порами (см. рис. 17). Сердцевинные лучи пихты, тисса и можжевельника состоят только из паренхимных клеток. Паренхимные клетки лучей сосны и кедра снабжены одной-двумя большими простыми порами, а у остальных наших хвойных пород эти клетки имеют по три-шесть мелких простых пор. У сосны, кедра, лиственницы и ели, кроме однорядных лучей, есть еще многорядные, по которым проходят горизонтальные смоляные ходы. Лучевые трахеиды - мертвые элементы, паренхимные клетки луча остаются живыми на протяжении заболони, а иногда и в ядре, т. е. в течение 20-30 лет.

В растущем дереве по сердцевинным лучам происходит движение питательных веществ и воды в горизонтальном направлении в период вегетации; в период покоя в них хранятся запасные питательные вещества. По сердцевинным лучам хвойных и лиственных пород проходит вода с растворенным фосфорнокислым натрием, содержащим радиоактивный изотоп фосфора Р 32 .

Смоляной ход представляет собой заполненный смолой узкий длинный межклеточный канал, образованный паренхимными клетками. Смоляные ходы (вертикальные и горизонтальные) из наших хвойных пород имеют сосна, ель, лиственница и кедр; у ряда других хвойных пород (пихта, тисс, можжевельник) смоляных ходов в древесине нет.


Рис. 18. Вертикальные смоляные ходы на поперечном разрезе древесины сосны и лиственницы: а-в древесине сосны освобожденный от смолы: б - в древесине сосны заполненный смолой; в - в лиственнице: 1 - выстилающие клетки; 2 - мертвые клетки; 3 - клетки сопровождающей перенхимы; 4-канал хода; 5 - трахеиды; 6 - сердцевинный луч.

Вертикальные смоляные ходы у сосны образованы тремя слоями клеток древесной паренхимы: внутренний слой; кольцо мертвых клеток и наружный слой. Внутренний слой, или эпителий, смоляного хода сосны состоит из выстилающих клеток, имеющих вид тонкостенных пузырей, которые вдаются в канал смоляного хода на различную глубину. При заполнении хода смолой под большим давлением они становятся плоскими, а при опоражнивании хода вдаются в канал до соприкосновения друг с другом (рис. 18). Выстилающие клетки сосны имеют тонкие целлюлозные стенки и наполнены густой зернистой протоплазмой с большим ядром; именно эти клетки выделяют смолу. У ели и лиственницы оболочка выстилающих клеток утолщается и древеснеет, вследствие чего они, вероятно, теряют способность выдавливать смолу из хода. Кольцо мертвых клеток, лишенных протоплазмы и заполненных воздухом, окружает эпителий смоляного хода.

Наружный слой представлен живыми клетками сопровождающей паренхимы с ядром, густой протоплазмой и запасными питательными веществами (крахмалом, маслом). Длина выстилающих клеток на продольных разрезах древесины немногим превышает поперечные размеры, мертвые клетки узки и длинны, а сопровождающие клетки в несколько раз длиннее мертвых и значительно шире их. Просвет (канал) вертикального смоляного хода по тангенциальному направлению обычно соответствует четырем рядам трахеид. С возрастом диаметр вертикальных смоляных ходов увеличивается по направлению от сердцевины к коре. В древесине сибирской лиственницы вертикальные смоляные ходы, образованы только одним рядом выстилающих клеток; слоя мертвых клеток нет, а сопровождающие клетки единичны или же их нет. В случае повреждения растущего дерева количество смоляных ходов может увеличиваться. Горизонтальные смоляные ходы проходят по сердцевинным лучам (рис. 19) и обычно образованы только двумя слоями клеток: эпителием и слоем мертвых клеток.

Длина горизонтальных ходов увеличивается с возрастом по мере нарастания древесины и луба; наружный конец их, находящийся в лубе, замыкается разрастанием выстилающих клеток. Диаметр горизонтальных смоляных ходов в среднем в 2,5-3 раза меньше диаметра вертикальных ходов. У сосны диаметр горизонтальных ходов 36-48μ, у кедра сибирского 48-64 μ у ели 20-32 μ, у лиственницы 24-48 μ; на 1 мм 2 поверхности тангенциального разреза у сосны, ели и кедра находится от одного до трех, а у лиственницы от одного до четырех смоляных ходов. Горизонтальные смоляные ходы пересекаются с вертикальными (см. рис. 19), образуя единую смолоносную систему.

Рис. 19. Смоляные ходы и клетки камбия: а - горизонтальный смоляной ход в сердцевинном луче сосны; б - соединение вертикального и горизонтального смоляных ходов на тангенциальном разрезе древесины; в - форма клеток камбия (схема); 1 - выстилающие клетки; 2 - мертвые клетки; 3 - канал горизонтального хода; 4 - канал вертикального хода; 5 -форма клеток камбия на тангенциальном разрезе (односкатная и двускатная); 6 - на радиальном; 7 - на поперечном разрезах.

Число соединений вертикальных xодов с горизонтальными достигает нескольких сотен в 1 см 3 . Из этой системы связанных смоляных ходов выключаются ходы ядра, которые перестают функционировать, так как живые клетки отмирают; каналы ходов в сосне заполняются при этом выростами выстилающих клеток. Однако в ядре лиственницы сибирской большое количество смоляных ходов остается открытым (каналы их не заполнены).

Древесная паренхима в хвойных породах мало распространена. Паренхимные клетки, несколько вытянутые по длине ствола, часто бывают соединены в довольно длинные ряды, проходящие в древесине параллельно оси ствола. Среди наших хвойных пород древесной паренхимы нет у сосны и тисса. Примерное содержание различных элементов в древесине хвойных пород приведено в табл. 5.

Таблица 5. Содержание различных элементов в древесине хвойных пород.

сердцевинных лучей

смоляных ходов

древесной паренхимы

Сосна (разные виды)

Ель (разные виды)

Лиственница западная

Лжетсуга

Можжевельник виргинский

Секвойя вечнозеленая

Камбий состоит из непрерывного ряда узких, сплюснутых в радиальном направлении, сильно вытянутых по длине ствола живых клеток с клиновидно заостренными концами. Клетки камбия наибольшей длины достигают у хвойных пород. У лиственных пород длина клеток камбия колеблется от 0,15 до 0,6 мм и превосходит поперечные размеры в несколько десятков раз, а у хвойных может достигать 5 мм и превышает поперечные размеры в несколько сот раз. Клетки содержат густозернистую протоплазму с ядром веретенообразной формы. Форма клеток камбия на трех разрезах схематически показана на рис. 19.

Кроме сильно вытянутых по длине клеток, образующих волокнистые элементы древесины и коры, наблюдаются разбросанные скопления мелких клеток типа паренхимных, которые образуют сердцевинные и лубяные лучи. Расположенный на границе между древесиной и корой камбий сплошной мантией одевает всю древесину дерева. Деятельность камбия обусловливает рост дерева в толщину. При росте камбиальные клетки слегка вытягиваются по радиусу ствола и делятся тангенциальными перегородками. Одна из образовавшихся клеток остается камбиальной, а другая идет на формирование элементов древесины или коры. Деление клеток в сторону древесины происходит в 10 раз чаще, чем в сторону коры, вследствие чего древесина нарастает значительно быстрее коры.

Камбий работает в течение всей жизни дерева, т. е. иногда сотни и даже тысячи лет (секвойя); при этом деятельность его в условиях умеренного климата проявляется периодически: замирает на зиму и возобновляется весной, следствием чего является слоистость древесины (образование годичных слоев). Деятельность камбия весной раньше всего начинается в тонких частях ствола и ветвей, распространяясь вниз по стволу, переходит затем в корни, сначала толстые, а затем тонкие; окончание деятельности камбия осенью происходит в том же порядке.

Хорошим мотивом к эффективной учебной деятельности при занятиях ботаникой является регулярная практика, при которой дети увидят в реальности то, что есть на картинках учебников. Одним из несложных первых опытов может стать изучение пластинчатого листа любого лиственного дерева или иголочек хвои сосны под микроскопом . Ввиду простоты этой работы, она не просто разовьет любознательность и подвигнет к новым исследованиям, но и научит действовать самостоятельно.

Хвоя сосны - это игловидный наружный орган сосудистого хвойного растения семейства «сосновые», которое насчитывает более ста тридцати известных видов. В простонародье она называется «иголка», но с точки зрения ботаники — это заострённый и слегка изогнутый лист с твердой стволообразной структурой.

По форме бывают плоские или четырехгранники. Если микротомом сделать поперечный срез и рассмотреть хвою сосны под микроскопом, можно визуально определить следующие элементы строения:

1) От четырех до пяти рядов неспециализированных пузыревидных клеток эпидермы. Это кожица, верхний покровный слой. Он несет в себе три функции: защитная от внешней среды, обмен газами, участие в процессе движения воды;

2) Участок гиподермы. Располагается непосредственно под эпидермисом, в несколько раз тоньше его. Это результат митоза соседних клеточных слоев;

3) Опорная и запасающая паренхима. По сути, эта ткань - сердцевина, являющаяся хранилищем питательных веществ. Содержит витамины, жиры, белки, также насыщенные воздухом межклетники и водоносные клетки. Благодаря ее складчатому строению и большому количеству хлоропластов, значительно повышается площадь фотосинтеза, при котором собранная энергия светового излучения трансформируется в органические соединения;

4) Эндодерма - внутренний защищающий покров, располагающийся ближе к оси сосновой иглы;

5) Флоэма и ксилема (проводящие ткани). Так называемый «флоэмный сок», представляющий раствор сахарозы и незначительного кол-ва других углеводов, транспортируется к определенным областям, потребляющим продукты фотосинтеза;

6) Волокнистые клетки склеренхимы. Обеспечивают упругость, защищают от деформаций, выдерживая силовые воздействия (например, при сдавливании или сгибе);

7) Широкие вертикальные и горизонтальные каналы, заполненные смолой - крупные «смоляные ходы». Масса смолистой живицы предохраняет от проникновения вредоносных насекомых (таких, как короеды, долгоносики).

Микроскопировать хвою можно в проходящем или отраженном свете. Микропрепарат готовится стандартно: взятый материал укладывается на предметное стекло, пипеткой добавляется капелька бесцветной клейкой пихтовой смолы, сверху накрывается тоненьким покровным стёклышком. Включив подсветку и произведя центрирование на столике, надо затем выбрать поисковый объектив наименьшей кратности. Когда исследуемый препарат появился в поле обзора, можно провести смену увеличения на более мощное (с повторной фокусировкой). Для получения микрофотографии надо вывести изображение на экран смартфона (на окулярную трубку устанавливается адаптер) или на монитор компьютера (вместо окуляра в данном случае вставляется видеоокуляр с выходом USB).

Подходящие модели для описанных выше наблюдений: Микромед С-12, Эврика 40х-400х, Levenhuk Rainbow 2L PLUS.